- 相關(guān)推薦
《解一元一次方程》數(shù)學(xué)教案
在教學(xué)工作者開展教學(xué)活動前,常常要根據(jù)教學(xué)需要編寫教案,教案是教學(xué)活動的總的組織綱領(lǐng)和行動方案。那么應(yīng)當(dāng)如何寫教案呢?下面是小編收集整理的《解一元一次方程》數(shù)學(xué)教案,希望對大家有所幫助。
《解一元一次方程》數(shù)學(xué)教案1
知識技能
會通過“移項(xiàng)”變形求解“ax+b=cx+d”類型的一元一次方程。
數(shù)學(xué)思考
1.經(jīng)歷探索具體問題中的數(shù)量關(guān)系過程,體會一元一次方程是刻畫實(shí)際問題的有效數(shù)學(xué)模型。進(jìn)一步發(fā)展符號意識。
2.通過一元一次方程的學(xué)習(xí),體會方程模型思想和化歸思想。
解決問題
能在具體情境中從數(shù)學(xué)角度和方法解決問題,發(fā)展應(yīng)用意識。
經(jīng)歷從不同角度尋求分析問題和解決問題的方法的過程,體驗(yàn)解決問題方法的多樣性。
情感態(tài)度
經(jīng)歷觀察、實(shí)驗(yàn)計(jì)算、交流等活動,激發(fā)求知欲,體驗(yàn)探究發(fā)現(xiàn)的快樂。
教學(xué)重點(diǎn)
建立方程解決實(shí)際問題,會通過移項(xiàng)解 “ax+b=cx+d”類型的一元一次方程。
教學(xué)難點(diǎn)
分析實(shí)際問題中的相等關(guān)系,列出方程。
教學(xué)過程
活動一 知識回顧
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提問:解這些方程時,方程的解一般化成什么形式?這些題你采用了那些變形或運(yùn)算?
教師:前面我們學(xué)習(xí)了簡單的一元一次方程的解法,下面請大家解下列方程。
出示問題(幻燈片)。
學(xué)生:獨(dú)立完成,板演2、4題,板演同學(xué)講解所用到的變形或運(yùn)算,共同講評。
教師提問:(略)
教師追問:變形的依據(jù)是什么?
學(xué)生獨(dú)立思考、回答交流。
本次活動中教師關(guān)注:
。1)學(xué)生能否準(zhǔn)確理解運(yùn)用等式性質(zhì)和合并同列項(xiàng)求解方程。
。2)學(xué)生對解一元一次方程的變形方向(化成x=a的形式)的理解。
通過這個環(huán)節(jié),引導(dǎo)學(xué)生回顧利用等式性質(zhì)和合并同類項(xiàng)對方程進(jìn)行變形,再現(xiàn)等式兩邊同時加上(或減去)同一個數(shù)、兩邊同時乘以(除以,不為0)同一個數(shù)、合并同類項(xiàng)等運(yùn)算,為繼續(xù)學(xué)習(xí)做好鋪墊。
活動二 問題探究
問題2:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學(xué)生?
教師:出示問題(投影片)
提問:在這個問題中,你知道了什么?根據(jù)現(xiàn)有經(jīng)驗(yàn)?zāi)愦蛩阍趺醋觯?/p>
(學(xué)生嘗試提問)
學(xué)生:讀題,審題,獨(dú)立思考,討論交流。
1.找出問題中的已知數(shù)和已知條件。(獨(dú)立回答)
2.設(shè)未知數(shù):設(shè)這個班有x名學(xué)生。
3.列代數(shù)式:x參與運(yùn)算,探索運(yùn)算關(guān)系,表示相關(guān)量。(討論、回答、交流)
4.找相等關(guān)系:
這批書的總數(shù)是一個定值,表示它的兩個等式相等.(學(xué)生回答,教師追問)
5.列方程:3x+20=4x-25(1)
總結(jié)提問:通過列方程解決實(shí)際問題分析時,要經(jīng)歷那些步驟?書寫時呢?
教師提問1:這個方程與我們前面解過的方程有什么不同?
學(xué)生討論后發(fā)現(xiàn):方程的兩邊都有含x的項(xiàng)(3x與4x)和不含字母的常數(shù)項(xiàng)(20與-25).
教師提問2:怎樣才能使它向x=a的形式轉(zhuǎn)化呢?
學(xué)生思考、探索:為使方程的右邊沒有含x的項(xiàng),等號兩邊同減去4x,為使方程的左邊沒有常數(shù)項(xiàng),等號兩邊同減去20.
3x-4x=-25-20(2)
教師提問3:以上變形依據(jù)是什么?
學(xué)生回答:等式的性質(zhì)1。
歸納:像上面那樣把等式一邊的某項(xiàng)變號后移到另一邊,叫做移項(xiàng)。
師生共同完成解答過程。
設(shè)問4:以上解方程中“移項(xiàng)”起了什么作用?
學(xué)生討論、回答,師生共同整理:
通過移項(xiàng),含未知數(shù)的項(xiàng)與常數(shù)項(xiàng)分別位于方程左右兩邊,使方程更接近于x=a的形式。
教師提問5:解這個方程,我們經(jīng)歷了那些步驟?列方程時找了怎樣的相等關(guān)系?
學(xué)生思考回答。
教師關(guān)注:
。1)學(xué)生對列方程解決實(shí)際問題的一般步驟:設(shè)未知數(shù),列代數(shù)式,列方程,是否清楚?
在參與觀察、比較、嘗試、交流等數(shù)學(xué)活動中,體驗(yàn)探究發(fā)現(xiàn)成功的快樂。
活動三 解法運(yùn)用
例2解方程
3x+7=32-2x
教師:出示問題
提問:解這個方程時,第一步我們先干什么?
學(xué)生講解,獨(dú)立完成,板演。
提問:“移項(xiàng)”是注意什么?
學(xué)生:變號。
教師關(guān)注:學(xué)生“移項(xiàng)”時是否能夠注意變號。
通過這個例題,掌握“ax+b=cx+d”類型的'一元一次方程的解法。體驗(yàn)“移項(xiàng)”這種變形在解方程中的作用,規(guī)范解題步驟。
活動四 鞏固提高
1.第91頁練習(xí)(1)(2)
2.某貨運(yùn)公司要用若干輛汽車運(yùn)送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問運(yùn)送這批貨物的汽車多少量?
3.小明步行由A地去B地,若每小時走6千米,則比規(guī)定時間遲到1小時;若每小時走8千米,則比規(guī)定時間早到0.5小時。求A、B兩地之間的距離。
教師按順序出示問題。
學(xué)生獨(dú)立完成,用實(shí)物投影展示部分學(xué)而生練習(xí)。
教師關(guān)注:
1.學(xué)生在計(jì)算中可能出現(xiàn)的錯誤。
2.x系數(shù)為分?jǐn)?shù)時,可用乘的辦法,化系數(shù)為1。
3.用實(shí)物投影展示學(xué)困生的完成情況,進(jìn)行評價、鼓勵。
鞏固“ax+b=cx+d”類型的一元一次方程的解法,反饋學(xué)生對解方程步驟的掌握情況和可能出現(xiàn)的計(jì)算錯誤。
2、3題的重點(diǎn)是在新情境中引導(dǎo)學(xué)生利用已有經(jīng)驗(yàn)解決實(shí)際問題,達(dá)到鞏固提高的目的。
活動五
提問1:今天我們學(xué)習(xí)了解方程的那種變形?它有什么作用、應(yīng)注意什么?
提問2:本節(jié)課重點(diǎn)利用了什么相等關(guān)系,來列的方程?
教師組織學(xué)生就本節(jié)課所學(xué)知識進(jìn)行小結(jié)。
學(xué)生進(jìn)行總結(jié)歸納、回答交流,相互完善補(bǔ)充。
教師關(guān)注:學(xué)生能否提煉出本節(jié)課的重點(diǎn)內(nèi)容,如果不能,教師則提出具體問題,引導(dǎo)學(xué)生思考、交流。
引導(dǎo)學(xué)生對本節(jié)所學(xué)知識進(jìn)行歸納、總結(jié)和梳理,以便于學(xué)生掌握和運(yùn)用。
布置作業(yè):
第93頁第3題
《解一元一次方程》數(shù)學(xué)教案2
教學(xué)目標(biāo):
1、 使學(xué)生會列一元一次方程解有關(guān)應(yīng)用題。
2、 培養(yǎng)學(xué)生分析解決實(shí)際問題的能力。
復(fù)習(xí)引入:
1、在小學(xué)里我們學(xué)過有關(guān)工程問題的應(yīng)用題,這類應(yīng)用題中一般有工作總量、工作時間、工作效率這三個量。這三個量的關(guān)系是:
。1)__________ (2)_________ (3)_________
人們常規(guī)定工程問題中的工作總量為______。
2、由以上公式可知:一件工作,甲用a小時完成,則甲的`工作量可看成________,工作時間是________,工作效率是_______。若這件工作甲用6小時完成,則甲的工作效率是_______。
講授新課:
1、例題講解:
一件工作,甲單獨(dú)做20小時完成,乙單獨(dú)做12小時完成。
問:甲乙合做,需幾小時完成這件工作?
。1)首先由一名至兩名學(xué)生閱讀題目。
。2)引導(dǎo)
、:這道題目的已知條件是什么?
、颍哼@道題目要求什么問題?
、螅哼@道題目的相等關(guān)系是什么?
。3)由一學(xué)生口頭設(shè)出求知數(shù),并列出方程,師生共同解答;同時教師在黑板上寫出解題過程,形成板書。
2、練習(xí):
有一個蓄水池,裝有甲、乙、丙三個進(jìn)水管,單獨(dú)開甲管,6分鐘可注滿空水池;單獨(dú)開乙管,12分鐘可注滿空水池;單獨(dú)開丙管,18分鐘可注滿空水池,如果甲、乙、丙三管齊開,需幾分鐘可注滿空水池?
此題的處理方法:
、瘢合扔梢幻麑W(xué)生閱讀題目;
Ⅱ:然后由兩名學(xué)生板演;
3、變式練習(xí):
丙管改為排水管,且單獨(dú)開丙管18分鐘可把滿池的水放完,問三管齊開,幾分鐘可注滿空水池?要求學(xué)生口頭列出方程。
4、繼續(xù)講解例題
一件工作,甲單獨(dú)做20小時完成,乙單獨(dú)做12小時完成。
若甲先單獨(dú)做4小時,剩下的部分由甲、乙合做,問:還需幾小時完成?
。1) 先由學(xué)生閱讀題目
。2) 引導(dǎo):
、:這道題目的已知條件是什么?
、颍哼@道題目要求什么問題?
、螅哼@道題目的相等關(guān)系是什么?
。3) 由一學(xué)生口頭設(shè)出求知數(shù),并列出方程,師生共同解答;同時教師在黑板上寫出解題過程,形成板書。
5、練習(xí):
。1)一件工作,甲單獨(dú)做20小時完成,乙單獨(dú)做12小時完成。
若乙先做2小時,然后由甲、乙合做,問還需幾小時完成?
。2)一件工作,甲單獨(dú)做20小時完成,乙單獨(dú)做12小時完成,丙單獨(dú)做15小時完成,若先由甲、丙合做5小時,然后由甲、乙合做,問還需幾天完成?
以上兩題的處理方法:
、瘢合扔蓛擅麑W(xué)生閱讀題目;
、颍喝缓笥蓛擅麑W(xué)生板演;
、螅浩渌麑W(xué)生任選一題完成。
、酰涸u講后對第一題提出:這項(xiàng)工程共需幾天完成?
、觯旱谝活}還可根據(jù)什么等量關(guān)系列出方程呢?根據(jù)此相等關(guān)系列出方程(學(xué)生口答)。
6、編應(yīng)用題:
(1) 根據(jù)方程:3/12+x/12+x/6=1,編應(yīng)用題。
。2) 事由:打一份稿件。
條件:現(xiàn)在甲、乙兩名打字員,若甲單獨(dú)打這份稿件需6小時打完,若乙單獨(dú)打這份稿件需12小時打完。
要求:甲、乙兩名打字員都要參與打字,并且要打完這份稿件。
處理方法:由學(xué)生編出應(yīng)用題,并設(shè)出未知數(shù),列出方程。
課堂總結(jié):工程問題中的三個量的關(guān)系。
課堂作業(yè):見作業(yè)本
選做題:一件工作,甲單獨(dú)做6小時完成,乙單獨(dú)做12小時完成,丙單獨(dú)做18小時完成,若先由甲、乙合做3小時,然后由乙丙合做,問共需幾小時完成?
《解一元一次方程》數(shù)學(xué)教案3
一、目標(biāo):
知識目標(biāo):能熟練地求解數(shù)字系數(shù)的一元一次方程( 不含去括號、去分母)。
過程方法目標(biāo):經(jīng)歷和體會解一元一次方程中“轉(zhuǎn)化”的思想方法。
情感態(tài)度目標(biāo):在數(shù)學(xué)活動中獲得成功的喜悅,增強(qiáng)自信心和意志力,激發(fā)學(xué)習(xí)興趣。
二、重難點(diǎn):
重點(diǎn):學(xué)會解一元一次方程
難點(diǎn):移項(xiàng)
三、學(xué)情分析:
知識背景:學(xué)生已學(xué)過用等式的性質(zhì)來解一元一次方程。
能力背景:能比較熟練地用等式的性質(zhì)來解一元一次方程。
預(yù)測目標(biāo):能熟練地用移項(xiàng)的方法來解一元一次方 程。
四、教學(xué)過程:
(一)創(chuàng)設(shè)情景
一頭半歲藍(lán)鯨的體 重是22t,90天后的體重是30.1t,藍(lán)鯨的體重平均每天增加多少?
(二)實(shí)踐探索,揭示新知
1.例2.解方程: 看誰算得又快:
解:方程的兩邊同時加上 得 解: 6x ? 2=10
移項(xiàng)得 6x =10+2
即 合并同類項(xiàng)得
化系數(shù)為1得
大家看一下有什么規(guī)律可尋?可以討論
2 .移項(xiàng)的概念: 根據(jù)等式的基本性質(zhì)方程中的某些項(xiàng)改變符號后,可以從方程的一邊移到另一邊 ,這樣的 變形叫做移項(xiàng)。
看誰做得又快又準(zhǔn)確!千萬不要忘記移項(xiàng)要變號。
3.解方程:3x+3 =12,
4.例3解方程: 例4解方程 :
2x=5x-21 x- 3=4-
5.觀察并思考:
、僖祈(xiàng)有什么特點(diǎn)?
、谝祈(xiàng)后的化簡包括哪些
(三)嘗試應(yīng)用 ,反饋矯正
1.下列解方程對嗎?
(1)3x+5=4 7=x-5
解: 3x+ 5 =4 解:7=x-5
移項(xiàng)得: 3x =4+5 移項(xiàng)得:-x= 5+7
合并同類項(xiàng)得 3x =9 合并同類項(xiàng)得 -x= 12
化系數(shù)為1得 x =3 化系數(shù)為1得 x = -12
。步夥匠
。1). 10x+1=9 (2) 2—3x =4-2x;
(四)歸納小結(jié)
。.今天學(xué)習(xí)了什么?有什么新的`簡便的寫法?
2.要注意什么?
3. 解方程的 一般步驟是什么?
4.. (1) 移項(xiàng)實(shí)際上 是對方程兩邊進(jìn)行 , 使用的是
。2)系數(shù) 化為 1 實(shí)際上是對方程兩邊進(jìn)行 , 使用的是 。
(3)移項(xiàng)的作用是什么?
(五)作業(yè)
1.課堂作業(yè):課本習(xí)題4.2第二題
2.家作:評價手冊4.2第二課時
《解一元一次方程》數(shù)學(xué)教案4
第一課時
教學(xué)目的
1.了解一元一次方程的概念。
2.掌握含有括號的一元一次方程的解法。
重點(diǎn)、難點(diǎn)
1.重點(diǎn):解含有括號的一元一次方程的解法。
2.難點(diǎn):括號前面是負(fù)號時,去括號時忘記變號。
教學(xué)過程
一、復(fù)習(xí)提問
1.解下列方程:
(1)5x-2=8 (2)5+2x=4x
2.去括號法則是什么?“移項(xiàng)”要注意什么?
二、新授
一元一次方程的概念
如44x+64=328 3+x=(45+x) y-5=2y+l 問:它們有什么共同特征?
只含有一個未知數(shù),并且含有未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是l,這樣的方程叫做一元一次方程。
例1.判斷下列哪些是一元一次方程
x= 3x-2 x-=-l
5x2-3x+1=0 2x+y=l-3y =5
例2.解方程(1)-2(x-1)=4
(2)3(x-2)+1=x-(2x-1)
強(qiáng)調(diào)去括號時把括號外的因數(shù)分別乘以括號內(nèi)的每一項(xiàng),若括號前面是“-”號,注意去掉括號,要改變括號內(nèi)的每一項(xiàng)的符號。
補(bǔ)充:解方程3x-[3(x+1)-(1+4)]=l
說明:方程中有多重括號時,一般應(yīng)按先去小括號,再去中括號,最后去大括號的方法去括號,每去一層括號合并同類項(xiàng)一次,以簡便運(yùn)算。
三、鞏固練習(xí)
教科書第9頁,練習(xí),l、2、3。
四、小結(jié)
學(xué)習(xí)了一元一次方程的概念,含有括號的'一元一次方程的解法。用分配律去括號時,不要漏乘括號中的項(xiàng),并且不要搞錯符號。
五、作業(yè)
1.教科書第12頁習(xí)題6.2,2第l題。
第二課時
教學(xué)目的
掌握去分母解方程的方法,體會到轉(zhuǎn)化的思想。對于求解較復(fù)雜的方程,注意培養(yǎng)學(xué)生自覺反思求解的過程和自覺檢驗(yàn)方程的解是否正確的良好習(xí)慣。
重點(diǎn)、難點(diǎn)
1、重點(diǎn):掌握去分母解方程的方法。
2、難點(diǎn):求各分母的最小公倍數(shù),去分母時,有時要添括號。
教學(xué)過程
一、復(fù)習(xí)提問
1.去括號和添括號法則。
2.求幾個數(shù)的最小公倍數(shù)的方法。
二、新授
例1:解方程(見課本)
解一元一次方程有哪些步驟?
一般要通過去分母,去括號,移項(xiàng),合并同類項(xiàng),未知數(shù)的系數(shù)化為1等步驟,把一個一元一次方程“轉(zhuǎn)化”成x=a的形式。解題時,要靈活運(yùn)用這些步驟。
補(bǔ)充例:解方程 (x+15)=- (x-7)
三、鞏固練習(xí)
教科書第10頁,練習(xí)1、2。
四、小結(jié)
1.解一元一次方程有哪些步驟?
2.掌握移項(xiàng)要變號,去分母時,方程兩邊每一項(xiàng)都要乘各分母的最小公倍數(shù),切勿漏乘不含有分母的項(xiàng),另外分?jǐn)?shù)線有兩層意義,一方面它是除號,另一方面它又代表著括號,所以在去分母時,應(yīng)該將分子用括號括上。
五、作業(yè)
教科書第13頁習(xí)題6.2,2第2題。
第三課時
教學(xué)目的
使學(xué)生靈活應(yīng)用解方程的一般步驟,提高綜合解題能力。
重點(diǎn)、難點(diǎn)
1、重點(diǎn):靈活應(yīng)用解題步驟。
2、難點(diǎn):在“靈活”二字上下功夫。
教學(xué)過程 :
一、 一、 復(fù)習(xí)
1、一元一次方程的解題步驟。
2、分?jǐn)?shù)的基本性質(zhì)。
二、新授
例1.解方程(見課本)
分析:此方程的分母是小數(shù),如果能把各分母化為整數(shù),那么就可以用前面學(xué)過的方法求解了。那么怎樣化簡呢?引導(dǎo)學(xué)生分析,并求出方程的解。交流體會。
例2.解方程(見課本)
例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整數(shù))
分析:在公式中,V、D、∏都已知,只要把它們的值代入公式,就可以得到關(guān)于n的一元一次方程。
三、鞏固練習(xí)。
根據(jù)公式V=V0+at,填寫下列表中的空格。
VV0at02848314155476137
四、小結(jié)。
若方程的分母是小數(shù),應(yīng)先利用分?jǐn)?shù)的性質(zhì),把分子、分母同時擴(kuò)大若干倍,此時分子要作為一個整體,需要補(bǔ)上括號,注意不是去分母,不能把方程其余的項(xiàng)也擴(kuò)大若干倍。
五、作業(yè) 。
《解一元一次方程》數(shù)學(xué)教案5
教學(xué)目標(biāo):
1、知識與技能:會解含分母的一元一次方程,掌握解一元一次方程的基本步驟和方法,能根據(jù)方程的特點(diǎn)靈活地選擇解法。
2、過程與方法:經(jīng)歷一元一次方程一般解法的探究過程,理解等式基本性質(zhì)在解方程中的作用,學(xué)會通過觀察,結(jié)合方程的特點(diǎn)選擇合理的思考方向進(jìn)行新知識探索。
3、情感、態(tài)度與價值觀:通過嘗試從不同角度尋求解決問題的方法,體會解決問題策略的多樣性;在解一元一次放的過程中,體驗(yàn)“化歸”的思想。
教學(xué)重難點(diǎn):
重點(diǎn):解一元一次方程的基本步驟和方法。
難點(diǎn):含有分母的一元一次方程的解題方法。
教學(xué)過程:
一、新課導(dǎo)入:
請同學(xué)們和老師一起解方程:
并回答:解一元一次方程的一般步驟和最終的.目的是什么?
二、講授新課
請給同學(xué)們介紹紙草書(P95)。
問題:一個數(shù),它的三分之二,它的一半,它的七分之一,它的全部,加起來總共是33.試問這個
數(shù)是多少?
并引入讓同學(xué)運(yùn)用設(shè)未知數(shù)的方法,列出相應(yīng)的方程。
并回答:這個方程和我們以前學(xué)習(xí)的方程有什么不同?
同學(xué)們和老師一起完成解上述方程,并引入去分母。
例1、
例2、
活動:同學(xué)們,解一元一次方程的步驟有哪些?要注意哪些?
看一看你會不會錯:
(1)解方程:
(2)解方程:
典型例題:解方程:
想一想:去分母時要注意什么問題?
(1)方程兩邊每一項(xiàng)都要乘以各分母的最小公倍數(shù)
(2)去分母后如分子中含有兩項(xiàng),應(yīng)將該分子添上括號
選一選:
練一練:當(dāng)m為何值時,整式和的值相等?
議一議:如何解方程:
注意區(qū)別:
1、把分母中的小數(shù)化為整數(shù)是利用分?jǐn)?shù)的基本性質(zhì),是對單一的一個分?jǐn)?shù)的分子分母同乘或除以一個不為0的數(shù),而不是對于整個方程的左右兩邊同乘或除以一個不為0的數(shù)。
2、而去分母則是根據(jù)等式性質(zhì)2,對方程的左右兩邊同乘或除以一個不為0的數(shù),而不是對于一個單一的分?jǐn)?shù)。
課堂小結(jié):
。1)怎樣去分母?應(yīng)在方程的左右兩邊都乘以各分母的最小公倍數(shù)。
有沒有疑問:不是最小公倍數(shù)行不行?
。2)去分母的依據(jù)是什么?
等式性質(zhì)2
(3)去分母的注意點(diǎn)是什么?
1、去分母時等式兩邊各項(xiàng)都要乘以最小公倍數(shù),不可以漏乘。
2、如果分子是含有未知數(shù)的代數(shù)式,其分子為一個整體應(yīng)加括號。
。4)解一元一次方程的一般步驟:
布置作業(yè):P98,習(xí)題3.3第3題
補(bǔ)充作業(yè):解方程:
(1)
。2)
板書設(shè)計(jì):
教學(xué)反思:
《解一元一次方程》數(shù)學(xué)教案6
一、學(xué)習(xí)目標(biāo)
1.知道解一元一次方程的去分母步驟,并能熟練地解一元一次方程。
2.通過討論、探索解一元一次方程的一般步驟和容易產(chǎn)生的問題,培養(yǎng)學(xué)生觀察、歸納和概括能力。
二、重點(diǎn):
解一元一次方程中去分母的方法;培養(yǎng)學(xué)生自己發(fā)現(xiàn)問題、解決問題的能力。
難點(diǎn):去分母法則的正確運(yùn)用。
三、學(xué)習(xí)過程:
。ㄒ唬(fù)習(xí)導(dǎo)入
1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)
2、回顧:解一元一次方程的一般步驟及每一步的`依據(jù)
3、(只列不解)為改善生態(tài)環(huán)境,避免水土流失,某村積極植樹造林,原計(jì)劃每天植樹60棵,實(shí)際每天植樹80棵,結(jié)果比預(yù)計(jì)時間提前4天完成植樹任務(wù),則計(jì)劃植樹_____棵。
。ǘ⿲W(xué)生自學(xué)p99--100
根據(jù)等式性質(zhì),方程兩邊同乘以,得
即得不含分母的方程:4x-3x=960
X=960
像這樣在方程兩邊同時乘以,去掉分?jǐn)?shù)的分母的變形過程叫做。依據(jù)是
(三)例題:
例1解方程:
解:去分母,得依據(jù)
去括號,得依據(jù)
移項(xiàng),得依據(jù)
合并同類項(xiàng),得依據(jù)
系數(shù)化為1,得依據(jù)
注意:1)、分?jǐn)?shù)線具有
2)、不含分母的項(xiàng)也要乘以(即不要漏乘)
討論:小明是個“小馬虎”下面是他做的題目,我們看看對不對?如果不對,請幫他改正。
。1)方程去分母,得
(2)方程去分母,得
。3)方程去分母,得
。4)方程去分母,得
通過這幾節(jié)課的學(xué)習(xí),你能歸納小結(jié)一下解一元一次方程的一般步驟嗎?
解一元一次方程的一般步驟是:
1.依據(jù);
2.依據(jù);
3.依據(jù);
4.化成的形式;依據(jù);
5.兩邊同除以未知數(shù)的系數(shù),得到方程的解;依據(jù);
練一練:見P101練習(xí)解下列方程:(1)(2)
。3)思考:如何求方程
小明的解法:解:去百分號,得同學(xué)看看有沒有異議?
四、小結(jié):
談?wù)勥@節(jié)課有什么收獲以及解帶有分母的一元一次方程要注意的一些問題。
五、課堂檢測:
1、去分母時,在方程的左右兩邊同時乘以各個分母的_____________,從而去掉分母,去分母時,每一項(xiàng)都要乘,不要漏乘,特別是不含分母的項(xiàng),注意含分母的項(xiàng)約去分母分子必須加括號,由于分?jǐn)?shù)線具有
2、解方程(1)2x+5=5x-7(2)4-3(2-x)=5x(3)=3x-1
(4)=+1(5)
六、作業(yè)
P102:3,10.
【《解一元一次方程》數(shù)學(xué)教案】相關(guān)文章:
解一元一次方程教案02-25
解一元一次方程移項(xiàng)教學(xué)反思04-07
解一元一次方程教案15篇03-01