- 相關(guān)推薦
初一二元一次方程組教案
作為一位杰出的教職工,時(shí)常要開(kāi)展教案準(zhǔn)備工作,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。來(lái)參考自己需要的教案吧!以下是小編為大家收集的初一二元一次方程組教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
初一二元一次方程組教案1
學(xué)習(xí)目標(biāo) :會(huì)運(yùn)用代入消元法解二元一次方程組.
學(xué)習(xí)重難點(diǎn):
1、會(huì)用代入法解二元一次方程組。
2、靈活運(yùn)用代入法的技巧.
學(xué)習(xí)過(guò)程:
一、基本概念
1、二元一次方程組中有兩個(gè)未知數(shù),如果消去其中一個(gè)未知數(shù),那么就把二元一次方程組轉(zhuǎn)化為我們熟悉的一元一次方程。我們可以先求出一個(gè)未知數(shù),然后再求另一個(gè)未知數(shù),。這種將未知數(shù)的個(gè)數(shù)由多化少、逐一解決的思想,叫做____________。
2、把二元一次方程組中一個(gè)方程的一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來(lái),再代入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的解,這種方法叫做________,簡(jiǎn)稱_____。
3、代入消元法的步驟:
二、自學(xué)、合作、探究
1、將方程5x-6y=12變形:若用y的式子表示x,則x=______,當(dāng)y=-2時(shí),x=_______;若用含x的式子表示y,則y=______,當(dāng)x=0時(shí),y=________ 。
2、在方程2x+6y-5=0中,當(dāng)3y=-4時(shí),2x= ____________。
3、若 的解,則a=______,b=_______。
4、若方程y=1-x的解也是方程3x+2y=5的解,則x=____,y=____。
5、用代人法解方程組 ①②,把____代人____,可以消去未知數(shù)______。
6、已知方程組 的解也是方程組 的解,則a=_______,b=________ ,3a+2b=___________。
7、已知x=1和x=2都滿足關(guān)于x的方程x2+px+q=0,則p=_____,q=________ 。
8、當(dāng)k=______時(shí),方程組 的.解中x與y的值相等。
9、用代入法解下列方程組:
⑴ ⑵ ⑶
二、訓(xùn)練
1、方程組 的解是( )
A. B. C. D.
2、已知二元一次方程3x+4y=6,當(dāng)x、y互為相反數(shù)時(shí),x=_____,y=______;當(dāng)x、y相等時(shí),x=______,y= _______ 。
3、若2ay+5b3x與-4a2xb2-4y是同類項(xiàng),則a=______,b=_______。
4、對(duì)于關(guān)于x、y的方程y=kx+b,k比b大1,且當(dāng)x= 時(shí),y= ,則k、b的值分別是( )
A. B.2,1 C.-2,1 D.-1,0
5、用代入法解下列方程組
⑴ ⑵
6、如果(5a-7b+3)2+ =0,求a與b的值。
7、已知2x2m-3n-7-3ym+3n+6=8是關(guān)于x,y的二元一次方程,求n2m
8、若方程組 與 有公共的解,求a,b.
初一二元一次方程組教案2
教學(xué)目的
1.使學(xué)生了解二元一次方程,二元一次方程組的概念。
2.使學(xué)生了解二元一次方程;二元一次方程組的解的含義,會(huì)檢驗(yàn)一對(duì)數(shù)是不是它們的解。
3.通過(guò)引例的教學(xué),使學(xué)生進(jìn)一步使用代數(shù)中的方程去反映現(xiàn)實(shí)世界中的等量關(guān)系,體會(huì)代數(shù)方法的優(yōu)越性。
重點(diǎn):了解二元一次方程、二元一次方程組以及二元一次方程組的`解的含
難點(diǎn);了解二元一次方程組的解的含義。
導(dǎo)學(xué)提綱:
1.什么叫一元一次方程?什么叫一元一次方程的解?怎樣檢驗(yàn)一個(gè)數(shù)是否是這個(gè)方程的解?
2.閱讀教材問(wèn)題1思考下列問(wèn)題
、.能否用我們已經(jīng)學(xué)過(guò)的知識(shí)來(lái)解決這個(gè)問(wèn)題?
用算術(shù)法解答
用一元一次方程解答
解后反思:既然是求兩個(gè)未知量,那么能不能同時(shí)設(shè)兩個(gè)未知數(shù)?
、.此問(wèn)題中有兩個(gè)問(wèn)題如果分別設(shè)為x、y,怎樣列式呢?(完成教材中的表格)
⑶.對(duì)于方程x十y=73x+y=17請(qǐng)思考下列問(wèn)題
、偎鼈兪且辉淮畏匠虇?
、谶@兩個(gè)方程有沒(méi)有共同特點(diǎn)/若有,有河共同特點(diǎn)?
③類比一元一次方程的概念,總結(jié)二元一次方程的概念
3.從教材中找出二元一次方程和二元一次方程組的概念(結(jié)合一元一次方程,二元一次方程對(duì)“元”和“次”作進(jìn)一步的解釋)
注意二元一次方程組的書(shū)寫(xiě)方式,方程組中的各方程中,同一個(gè)字母必須代表同一個(gè)量
4.與是否滿足方程①與是否滿足方程②類比一元一次方程的解總結(jié)二元一次方程組的解的概念
注意:(1)未知數(shù)的值必須同時(shí)滿足兩個(gè)方程時(shí),才是方程組的解.若取,時(shí),它們能滿足方程①,但不滿足方程②,所以它們不是方程組的解.
(2)二元一次方程組的解是一對(duì)數(shù),而不是一個(gè)數(shù),所以必須把與合起來(lái),才是方程組的解.
5.思考討論在方程組①②③④
、茛拗,屬于二元一次方程組的有
達(dá)標(biāo)檢測(cè):
1.根據(jù)下列語(yǔ)句,分別設(shè)適當(dāng)?shù)奈粗獢?shù),列出二元一次方程或方程組:
(1)甲數(shù)的比乙數(shù)的2倍少7:_____________________________;
(2)摩托車的時(shí)速是貨車的倍,它們的速度之和是200千米/時(shí):________;
(3)某種時(shí)裝的價(jià)格是某種皮裝的價(jià)格的1.4倍,5件皮裝比3件時(shí)裝貴700元:______________________________.
2.下列方程是二元一次方程的是()
A、2x+x=1B、x-3yC、x+x-3=0D、x+y=2
3.下列不是二元一次方程組的是()
x+3y=5m+3m=152x+3x=0m+n=5
A、B、C、D、
2x-3x=3+=3-5y=02m+n=6
x=2
4.在方程3x-ky=0中,如果是它的一個(gè)解,則k的值為_(kāi)______.
y=-3
5.若mxy+9x+3y=-9是關(guān)于x、y的二元一次方程,則m=_______n=_______.
初一二元一次方程組教案3
學(xué)習(xí)目標(biāo):
1.使學(xué)生初步理解二元一次方程與一次函數(shù)的關(guān)系
2.能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值
3.能解二元一次方程組的方法求兩條直線的交點(diǎn)坐標(biāo)
學(xué)習(xí)重點(diǎn):
1.用作圖像法求二元一次方程組的近似值
2.用解二元一次方程組的方法求兩條直線的交點(diǎn)坐標(biāo)
學(xué)習(xí)難點(diǎn):
1.做圖像時(shí)要標(biāo)準(zhǔn)、精確,近似值才接近
2.解二元一次方程組時(shí)計(jì)算準(zhǔn)確,方法適宜
學(xué)習(xí)方法:
先自學(xué)課本,用心思考自主學(xué)習(xí)部分,努力獨(dú)立完成,再與其他同學(xué)討論未明白的內(nèi)容。課上展示,針對(duì)自己不明白問(wèn)題多聽(tīng)多問(wèn)。
自主學(xué)習(xí)部分:
問(wèn)題1
。1)方程x+y=5的解有多少組?寫(xiě)出其中的幾組解。
(2)在直角坐標(biāo)系中分別描出以上這些解為坐標(biāo)的點(diǎn),它們?cè)谝淮魏瘮?shù)y=5-x的圖像上嗎?
(3)在一次函數(shù)y=5-x的圖像上任取一點(diǎn),它們的坐標(biāo)適合方程x+y=5嗎?
(4)以方程x+y=5的解為坐標(biāo)的`所有點(diǎn)組成的圖像與一次函數(shù)y=5-x的圖像相同嗎?
。5)由以上的探究過(guò)程,你發(fā)現(xiàn)了什么?
問(wèn)題2
(1)在同一個(gè)直角坐標(biāo)系內(nèi)分別作出一次函數(shù)y=5-x和y=2x-1的圖像,這兩個(gè)圖像有交點(diǎn)嗎?如果有,寫(xiě)出交點(diǎn)坐標(biāo)?
。2)一次函數(shù)y=5-x和y=2x-1的交點(diǎn)坐標(biāo)與方程組的解有什么關(guān)系?你能說(shuō)明理由嗎?
(3)由以上探究過(guò)程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點(diǎn)的坐標(biāo)。
合作探究:
。1)用做圖像的方法解方程組
(2)用解方程的方法求直線y=4-2x與直線y=2x-12交點(diǎn)
初一二元一次方程組教案4
教學(xué)目標(biāo)
1.會(huì)用加減法解一般地二元一次方程組。
2.進(jìn)一步理解解方程組的消元思想,滲透轉(zhuǎn)化思想。
3.增強(qiáng)克服困難的勇力,提高學(xué)習(xí)興趣。
教學(xué)重點(diǎn)
把方程組變形后用加減法消元。
教學(xué)難點(diǎn)
根據(jù)方程組特點(diǎn)對(duì)方程組變形。
教學(xué)過(guò)程
一、復(fù)習(xí)引入
用加減消元法解方程組。
二、新課。
1.思考如何解方程組(用加減法)。
先觀察方程組中每個(gè)方程x的`系數(shù),y的系數(shù),是否有一個(gè)相等。或互為相反數(shù)?
能否通過(guò)變形化成某個(gè)未知數(shù)的系數(shù)相等,或互為相反數(shù)?怎樣變形。
學(xué)生解方程組。
2.例1.解方程組
思考:能否使兩個(gè)方程中x(或y)的系數(shù)相等(或互為相反數(shù))呢?
學(xué)生討論,小組合作解方程組。
提問(wèn):用加減消元法解方程組有哪些基本步驟?
三、練習(xí)。
1.P40練習(xí)題(3)、(5)、(6)。
2.分別用加減法,代入法解方程組。
四、小結(jié)。
解二元一次方程組的加減法,代入法有何異同?
五、作業(yè)。
P33.習(xí)題2.2A組第2題(3)~(6)。
B組第1題。
選作:閱讀信息時(shí)代小窗口,高斯消去法。
后記:
2.3二元一次方程組的應(yīng)用
初一二元一次方程組教案5
知識(shí)要點(diǎn)
1、二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是一次的整式方程叫做~
2、二元一次方程的解:適合二元一次方程的一組未知數(shù)的值叫做這個(gè)二元一次方程的一個(gè)解;
3、二元一次方程組:由幾個(gè)一次方程組成并含有兩個(gè)未知數(shù)的方程組叫做二元一次方程組
4、二元一次方程組的解:適合二元一次方程組里各個(gè)方程的一對(duì)未知數(shù)的值,叫做這個(gè)方程組里各個(gè)方程的公共解,也叫做這個(gè)方程組的解(注意:①書(shū)寫(xiě)方程組的解時(shí),必需用“”把各個(gè)未知數(shù)的值連在一起,即寫(xiě)成的形式;②一元方程的解也叫做方程的根,但是方程組的解只能叫解,不能叫根)
5、解方程組:求出方程組的解或確定方程組沒(méi)有解的過(guò)程叫做解方程組
6、解二元一次方程組的基本方法是代入消元法和加減消元法(簡(jiǎn)稱代入法和加減法)
(1)代入法解題步驟:把方程組里的一個(gè)方程變形,用含有一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù);把這個(gè)代數(shù)式代替另一個(gè)方程中相應(yīng)的未知數(shù),得到一個(gè)一元一次方程,可先求出一個(gè)未知數(shù)的值;把求得的這個(gè)未知數(shù)的值代入第一步所得的式子中,可求得另一個(gè)未知數(shù)的值,這樣就得到了方程的解
。2)加減法解題步驟:把方程組里一個(gè)(或兩個(gè))方程的兩邊都乘以適當(dāng)?shù)臄?shù),使兩個(gè)方程里的某一個(gè)未知數(shù)的'系數(shù)的絕對(duì)值相等;把所得到的兩個(gè)方程的兩邊分別相加(或相減),消去一個(gè)未知數(shù),得到含另一個(gè)未知數(shù)的一元一次方程(以下步驟與代入法相同)
一、例題精講
分別用代入法和加減法解方程組
解:代入法:由方程②得:③
將方程③代入方程①得:
解得x=2
將x=2代入方程②得:4-3y=1
解得y=1
所以方程組的解為
加減法:
例2.從少先隊(duì)夏令營(yíng)到學(xué)校,先下山再走平路,一少先隊(duì)員騎自行車以每小時(shí)12公里的速度下山,以每小時(shí)9公里的速度通過(guò)平路,到學(xué)校共用了55分鐘,回來(lái)時(shí),通過(guò)平路速度不變,但以每小時(shí)6公里的速度上山,回到營(yíng)地共花去了1小時(shí)10分鐘,問(wèn)夏令營(yíng)到學(xué)校有多少公里?
分析:路程分為兩段,平路和坡路,來(lái)回路程不變,只是上山和下山的轉(zhuǎn)變導(dǎo)致時(shí)間的不同,所以設(shè)平路長(zhǎng)為x公里,坡路長(zhǎng)為y公里,表示時(shí)間,利用兩個(gè)不同的過(guò)程列兩個(gè)方程,組成方程組
解:設(shè)平路長(zhǎng)為x公里,坡路長(zhǎng)為y公里
依題意列方程組得:
解這個(gè)方程組得:
經(jīng)檢驗(yàn),符合題意
x+y=9
答:夏令營(yíng)到學(xué)校有9公里二、課堂小結(jié):
回顧本章內(nèi)容,總結(jié)二元一次方程組的解法和應(yīng)用。
三、作業(yè)布置:
P25A組習(xí)題
初一二元一次方程組教案6
教學(xué)目標(biāo)
1.會(huì)列出二元一次方程組解簡(jiǎn)單應(yīng)用題,并能檢驗(yàn)結(jié)果的合理性。
2.知道二元一次方程組是反映現(xiàn)實(shí)世界量之間相等關(guān)系的一種有效的.數(shù)學(xué)模型。
3.引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),滲透將來(lái)未知轉(zhuǎn)達(dá)化為已知的辯證思想。
教學(xué)重點(diǎn)
1.列二元一次方程組解簡(jiǎn)單問(wèn)題。
2.徹底理解題意
教學(xué)難點(diǎn)
找等量關(guān)系列二元一次方程組。
教學(xué)過(guò)程
一、情境引入。
小剛與小玲一起在水果店買水果,小剛買了3千克蘋(píng)果,2千克梨,共花了18.8元。小玲買了2千克蘋(píng)果,3千克梨,共花了18.2元;丶衣飞希麄冇錾狭撕门笥研≤,小軍問(wèn)蘋(píng)果、梨各多少錢(qián)1千克?他們不講,只講各自買的幾千克水果和總共的錢(qián),要小軍猜。聰明的同學(xué)們,小軍能猜出來(lái)嗎?
二、建立模型。
1.怎樣設(shè)未知數(shù)?
2.找本題等量關(guān)系?從哪句話中找到的?
3.列方程組。
4.解方程組。
5.檢驗(yàn)寫(xiě)答案。
思考:怎樣用一元一次方程求解?
比較用一元一次方程求解,用二元一次方程組求解誰(shuí)更容易?
三、練習(xí)。
1.根據(jù)問(wèn)題建立二元一次方程組。
。1)甲、乙兩數(shù)和是40差是6,求這兩數(shù)。
。2)80班共有64名學(xué)生,其中男生比女生多8人,求這個(gè)班男生人數(shù),女生人數(shù)。
。3)已知關(guān)于求x、y的方程,是二元一次方程。求a、b的值。
2.P38練習(xí)第1題。
四、小結(jié)。
小組討論:列二元一次方程組解應(yīng)用題有哪些基本步驟?
五、作業(yè)。
P42。習(xí)題2.3A組第1題。
后記:
2.3二元一次方程組的應(yīng)用
初一二元一次方程組教案7
一、教材的地位與作用
在人教版教材的七至九年級(jí)的數(shù)學(xué)教材中,對(duì)方程進(jìn)行知識(shí)性重點(diǎn)學(xué)的地方先后出現(xiàn)3次:七年級(jí)上冊(cè)第二章(一元一次方程),七年級(jí)下冊(cè)第八章(二元一次方程組),九年級(jí)上冊(cè)第二十二章(一元二次方程)。所以二元一次方程組這章正處在對(duì)前面學(xué)習(xí)過(guò)的一元一次方程的有關(guān)知識(shí)起著檢查鞏固的,又為以后方程的學(xué)習(xí)進(jìn)一步打下基礎(chǔ) 的作用。
二元一次方程組的知識(shí)對(duì)學(xué)生以后學(xué)習(xí)一次函數(shù),將來(lái)對(duì)有關(guān)線性方程的學(xué)習(xí)和研究都是一個(gè)中重要的入門(mén)基礎(chǔ)。方程組是解決含有多個(gè)未知數(shù)問(wèn)題的重要的數(shù)學(xué)工具,很多實(shí)際問(wèn)題的解決都是用方程(組)這種數(shù)學(xué)模型來(lái)解決的,通過(guò)二元一次方程組的學(xué)習(xí)培養(yǎng)學(xué)生數(shù)學(xué)建模的數(shù)學(xué)思想和數(shù)學(xué)方法,為將來(lái)他們從事現(xiàn)實(shí)問(wèn)題的線性分析和研究有著啟蒙和激發(fā)效果。
二、教學(xué)目標(biāo)
1、 知識(shí)技能:能根據(jù)實(shí)際問(wèn)題列出二元一次方程(組),了解二元一次方程(組)的含義,理解二元一次方程(組)的解的含義,會(huì)求待定條件下的二元一次方程(組)的解,并會(huì)檢驗(yàn)給定的一對(duì)未知數(shù)的.值是否是二元一次方程(組)的解。
2、 數(shù)學(xué)思考:在根據(jù)實(shí)際情況列二元一次方程(組)解決實(shí)際問(wèn)題的過(guò)程中體會(huì)到數(shù)學(xué)建模的思想,培養(yǎng)學(xué)生分析問(wèn)題的數(shù)學(xué)意識(shí)。
3、解決問(wèn)題:能根據(jù)問(wèn)題中的未知數(shù)的個(gè)數(shù)列出相應(yīng)的二元一次方程(組)
4、情感體驗(yàn):
、僭诹蟹匠探M-表示和解決實(shí)際問(wèn)題的過(guò)程中,體驗(yàn)到數(shù)學(xué)的實(shí)用性,提高學(xué)習(xí)數(shù)學(xué)的興趣。
②在探討解決問(wèn)題的過(guò)程中,敢于發(fā)表自己的見(jiàn)解,理解他人的看法并與
他人交流。
三、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):能用二元一次方程(組)來(lái)表示一些實(shí)際問(wèn)題的數(shù)量關(guān)系,弄清二元一次方程(組)及它們解的含義。
難點(diǎn):能針對(duì)具體問(wèn)題列出二元一次方程(組),對(duì)二元一次方程(組)的解的探求。
四、教法
(1)啟發(fā)式教學(xué)
(老師耐心引導(dǎo)、分析、講解和設(shè)置啟發(fā)式提問(wèn),引導(dǎo)學(xué)生對(duì)本節(jié)知識(shí)的理解和掌握)
(2)學(xué)案式教學(xué)
(讓學(xué)生自己閱讀,自主討論,探索研究獲得知識(shí),得出結(jié)論)
五、 學(xué)法
在老師的引導(dǎo)下,充分發(fā)揮學(xué)生的主觀能動(dòng)性,通過(guò)觀察、討論、分析、探索等步驟,自己發(fā)現(xiàn)問(wèn)題提出問(wèn)題,解決問(wèn)題,能師生互動(dòng)、生生互動(dòng),提高學(xué)生的合作意識(shí),共同來(lái)完成教學(xué)目標(biāo)。
六、 教學(xué)過(guò)程
(一)復(fù)述回顧:以二人小組完成學(xué)案上的3個(gè)問(wèn)題;
(二)創(chuàng)設(shè)情境――引入課題
雞兔同籠
今有雞兔同籠,上有三十五頭,下有九十四足,問(wèn)雞兔各有幾何?
讓學(xué)生用一元一次方程解決問(wèn)題
設(shè)一個(gè)未知數(shù)列一元一次方程來(lái)解就會(huì)出現(xiàn)方程: 2x+4(35-x)=94(設(shè)雞x只)①
4x+2(35-x)=94(設(shè)兔x只)②
讓學(xué)生設(shè)倆未知數(shù)來(lái)解,估計(jì)大部分同學(xué)列不出來(lái),那么無(wú)論列出與否,引出正題--二元一次方程組 。
(三)設(shè)問(wèn)導(dǎo)讀與自我檢測(cè)
同學(xué)們自己閱讀課本,并完成設(shè)問(wèn)導(dǎo)讀與自我檢測(cè)的問(wèn)題,完成之后,小組討論,與組長(zhǎng)核對(duì)答案,先組內(nèi)解決疑難問(wèn)題,教師下去收集問(wèn)題,并指導(dǎo)、生對(duì)新知識(shí)的探究。
1.對(duì)雞兔同籠問(wèn)題列方程,設(shè)雞x只,兔y只,X+y=35③
2x+4y=94④
先引導(dǎo)學(xué)生觀察方程③、④有什么特點(diǎn)。這樣的方程叫什么方程?(試著讓學(xué)生說(shuō)出二元一次方程的定義)舉例說(shuō)明需要注意的地方,和一些難以分辨的方程,馬上做自我檢測(cè)第一題,發(fā)現(xiàn)問(wèn)題解決問(wèn)題。
2.前面的問(wèn)題同事滿足③、④,把他們和在一起就組成二元一次方程組,試著讓學(xué)生說(shuō)出定義,做自我檢測(cè)第三題,說(shuō)明第四個(gè)也是二元一次方程組。
【初一二元一次方程組教案】相關(guān)文章:
二元一次方程組教學(xué)反思10-19
解二元一次方程組教學(xué)反思05-16
解二元一次方程組教學(xué)反思08-07
二元一次方程教案08-23
二元一次方程教案07-27
(必備)二元一次方程教案10-24
二元一次方程教案15篇(精選)07-27
初一政治教案05-16
初一語(yǔ)文經(jīng)典教案03-24
《一次比一次有進(jìn)步》教案09-12