丁香花无码AV在线,欧美日韩国产色,年轻人手机在线免费视频,伊人成人在线,可以直接免费观看的av网站,日本三级香港三级人妇99,亚洲免费二区

《圓錐的體積》教案

時間:2025-09-07 08:33:54 教案 我要投稿

《圓錐的體積》教案

  作為一名人民教師,時常要開展教案準備工作,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W方法。那么教案應該怎么寫才合適呢?以下是小編幫大家整理的《圓錐的體積》教案,希望對大家有所幫助。

《圓錐的體積》教案

《圓錐的體積》教案1

  教學目標:

  1、通過動手操作實驗,推導出圓錐體體積的計算公式。

  2、理解并掌握體積公式,能運用公式求圓錐的體積,并會解決簡單的實際問題。

  3、通過學生動腦、動手,培養(yǎng)學生的觀察、分析的綜合能力。

  教具準備:等底等高的圓柱體和圓錐體5套,大小不同的圓柱體和圓錐體5套、水槽5個,以及多媒體輔助教學課件。

  教學過程設計:

  一、復習舊知,做好鋪墊。

  1、認識圓柱(課件演示),并說出怎樣計算圓柱的體積?(屏幕出示:圓柱體的體積=底面積×高)

  2、口算下列圓柱的體積。

  (1)底面積是5平方厘米,高 6 厘米,體積 = ?

  (2)底面半徑是 2 分米,高10分米,體積 = ?

  (3)底面直徑是 6 分米,高10分米,體積 = ?

  3、認識圓錐(課件演示),并說出有什么特征?

  二、溝通知識、探索新知。

  教師導入:同學們,我們已經認識了圓錐,掌握了它的特征,但是,對于圓錐的學習我們不能只停留在認識上,有關圓錐的知識還有很多有待于我們去學習、去探究。這節(jié)課我們就來研究“圓錐的體積”。(板書課題)

  1、探討圓錐的體積計算公式。

  教師:怎樣推導圓錐的體積計算公式呢?在回答這個問題之前,請同學們先想一想,我們是怎樣知道圓柱體積計算公式的.?

  學生回答,教師板書:

  圓柱------(轉化)------長方體

  圓柱體積計算公式--------(推導)長方體體積計算公式

  教師:借鑒這種方法,為了我們研究圓錐體體積的方便,每個組都準備了一個圓柱體和一個圓錐體。你們小組比比看,這兩個形體有什么相同的地方?學生操作比較后,再用課件演示。

  (1)提問學生:你發(fā)現(xiàn)到什么?(圓柱和圓錐的底和高有什么關系?)

  (學生得出:底面積相等,高也相等。)

  教師:底面積相等,高也相等,用數(shù)學語言說就叫“等底等高”。

  (板書:等底等高)

  (2)為什么?既然這兩個形體是等底等高的,那么我們就跟求圓柱體體積一樣,就用“底面積×高”來求圓錐體體積行不行?

  (不行,因為圓錐體的體積小)

  教師:(把圓錐體套在透明的圓柱體里)是啊,圓錐體的體積小,那你估計一下這兩個形體的體積大小有什么樣的倍數(shù)關系?(指名發(fā)言)

  用水和圓柱體、圓錐體做實驗。怎樣做這個實驗由小組同學自己商量,但最后要向同學們匯報,你們組做實驗的圓柱體和圓錐體在體積大小上有什么樣的倍數(shù)關系。

  (3)學生分組做實驗,并借助課件演示。

  (教師深入小組中了解活動情況,對個別小組予以適當?shù)膸椭?

  a、誰來匯報一下,你們組是怎樣做實驗的?

  b、你們做實驗的圓柱體和圓錐體在體積大小上發(fā)現(xiàn)有什么倍數(shù)關系?

  (學生發(fā)言:圓柱體的體積是圓錐體體積的3倍)

  教師:同學們得出這個結論非常重要,其他組也是這樣的嗎?

  學生回答后,教師用教學課件演示實驗的全過程,并啟發(fā)學生在小組內有條理地表述圓錐體體積計算公式的推導過程。

  (板書圓錐體體積計算公式)

  教師:我們學過用字母表示數(shù),誰來把這個公式用字母表示一下?(指名發(fā)言,板書)

  (4)學生操作:出示另外一組大小不同的圓柱體和圓錐體進行體積大小的比較,通過比較你發(fā)現(xiàn)什么?

  學生回答后,教師整理歸納:不是任何一個圓錐體的體積都是任何一個圓柱體體積的 。(教師拿起一個小圓錐、一個大圓柱)如果老師在這個大圓錐體里裝滿了水,往這個小圓柱體里倒,需要倒三次才能倒?jié)M嗎?(不需要)

  為什么你們做實驗的圓錐體里裝滿了水往圓柱體里倒,要倒三次才能倒?jié)M呢?(因為是等底等高的圓柱體和圓錐體。)

  (教師給體積公式與“等底等高”四個字上連線。)

  進一步完善體積計算公式:

  圓錐的體積=等底等高的圓柱體體積×1/3

  =底面積 × 高×1/3

  V = 1/3Sh

  教師:現(xiàn)在我們得到的這個結論就更完整了。(指名反復敘述公式。)

  課件出示:

  想一想,討論一下:?

  (1)通過剛才的實驗,你發(fā)現(xiàn)了什么?

  (2)要求圓錐的體積必須知道什么?

  學生后討論回答。

  三、 應用求體積、解決問題。

  1、口答。

  (1)有一個圓柱的體積是27立方分米,與它等底等高的圓錐體積是多少?

  (2)有一個圓錐的體積是9立方分米,與它等底等高的圓柱體積是多少?

  2、出示例題,學生讀題,理解題意,自己解決問題。

  例1、一個圓錐形的零件,底面積是19平方厘米,高是12厘米,這個零件的體積是多少?

  a、 學生完成后,進行小組交流。

  b 、 你是怎樣想的和怎樣解決問題的。(提問學生多人)

  c 、 教師板書:

  1/3×19×12=76(立方厘米)

  答:它的體積是76立方厘米

  3 、練習題。

  一個圓錐體,半徑為6cm,高為18cm。體積是多少?(學生在黑板上只列式,反饋。)

  我們已經學會了求圓錐體的體積,現(xiàn)在我們來解決有關圓錐體體積的問題。

  4、出示例2:要求學生自己讀題,理解題意。

  在打谷場上,有一個近似于圓錐形的小麥堆,測得底面直徑是4米,高是1.2米,每立方米小麥約重735千克,這堆小麥約有多少千克?(得數(shù)保留整千克)

  (1)提問:從題目中你知道了什么?

  (2)學生獨立完成后教師提問,并回答學生的質疑:

  3.14×(4÷2)2×1.2× 1/3 表示什么?為什么要先求圓錐的體積?得數(shù)保留整千克數(shù)是什么意思?….

  5、比較:例1和例2有什么不同的地方?

  (1)例1直接告訴了我們底面積,而例2沒有直接告訴,要求我們先求出底面積,再求出圓錐體積;(2)例1 是直接求體積,例2是求出體積后再求重量。

《圓錐的體積》教案2

  教學內容:教科書第52頁練習十二的第69題。

  教學目的:通過練習,使學生進一步熟悉圓錐的體積計算。

  教學過程:

  一、復習

  1.圓錐的體積公式是什么?

  2.填空。

  (1)一個圓錐的體積是與它等底等高的圓柱體積的

 。2)圓柱的體積相當于和它等底等高的圓錐體積的( )倍。

 。3)把一個圓柱削成一個最大的圓錐,削去部分的體積相當于圓柱的 ,相當 于圓錐的( )倍。

  二、課堂練習

  1.做練習十二的第6題。

  教師出示一個圓錐形物體,讓學生想一想怎樣測量才能計算出它的體積:

  讓學生分組討論一下,然后各自讓一名學生說說討論的結果,最后歸納出幾種行之有效的測量方法。例如,要求一個圓錐物體的'體積,可以先用軟尺量出底面圓的周長,再求出底面的半徑,進而求出底面積,然后用書上介紹的方法,用直尺和三角板

  測量出圓錐的高,這樣就可以求出圓錐的體積。

  2.做練習十二的第7題。

  讀題后,教師可以先后提問:

  這道題已知什么?求什么?

  要求這堆沙的重量,應該先求什么?怎樣求?

  指名學生回答后,讓學生做在練習本上,做完后集體訂正。

  3.做練習十二的第8題。

  讀題后,教師可提出以下問題:

  這道題要求的是什么?

  要求這段鋼材重多少千克,應該先求什么?怎樣求?

  能直接利用題目中的數(shù)值進行計算嗎?為什么?

  題目中的單位不統(tǒng)一,應該怎樣統(tǒng)一?

  分別指名學生回答后,要使學生明白這里要先將2米改寫成200厘米,再利用圓柱的體積計算公式算出鋼材的體積是多少立方厘米,然后再求出它的重量。最后計算出的結果還應把克改寫成千克。

  4.做練習十二的第9題。

  讀題后,教師提問:這道題要求糧倉裝小麥多少噸,應該先求什么?

  要使學生明白,應該先求2.5米高的小麥的體積,而不是求糧倉的體積。

  讓學生獨立做在練習本上,做完后集體訂正。

  三、選做題

  讓學有余力的學生做練習十二的第10*、11*、12*題。

  1.練習十二的第10*題。

  教師:這道題要求圓錐的體積.但是題目中沒有告訴底面積,而只是已知底面周長和高。請大家想一想,應該怎樣求出底面積?

  引導學生利用C=2r可以得到r= 。再利用SR,就可以求得S=( )。再利用圓錐的體積公式就可以求出其體積。

  2.練習十二的第11*題。

  這是一道有關圓柱、圓錐體積的比例應用題。

  可以用列方程來解答。利用題目中圓錐和圓柱的體積之比,可以建立一個比例式。

  設圓柱的高為x厘米。

  =

  X=9。6

 。ㄗ⒁猓河捎趫A錐和圓柱的底面積S都相等,所以計算中可以先把S約去。)

  3.練習十二的第12題。

  這道題是拆分組合圖形,引導學生仔細分析圖形,不難看出它是由等底的圓柱和圓錐組合而成的:從圖中可以看出,圓柱和圓錐的底面直徑都是16厘米,而圓柱的高是4厘米,圓錐的高是17厘米。然后再根據(jù)圓的面積公式及圓柱和圓錐的體積公式,就可以求出這個組合圖形的體積了。

《圓錐的體積》教案3

  【教學內容】

  圓錐的體積(1)(教材第33頁例2)。

  【教學目標】

  1、參與實驗,從而推導出圓錐體積的計算公式,會運用圓錐的體積公式計算圓錐的體積。

  2、培養(yǎng)學生初步的空間觀念,讓學生經歷圓錐體積公式的推導過程,體驗觀察、比較、分析、總結、歸納的學習方法。

  【重點難點】

  圓錐體積公式的推導過程。

  【教學準備】

  同樣的圓柱形容器若干,與圓柱等底等高的圓錐形容器,與圓柱不等底等高的圓錐形容器若干,沙子和水。

  【情景導入】

  1、復習舊知,作出鋪墊。

 。1)教師用電腦出示一個透明的圓錐。

  教師:同學們仔細觀察,圓錐有哪些主要特征呢?

  (2)復習高的概念。

  A、什么叫做圓錐的高?

  B、請一名同學上來指出用橡皮泥制作的.圓錐模型的高。(提供刀片、橡皮泥模型等,幫助學生進行操作)

  2、創(chuàng)設情境,引發(fā)猜想。

 。1)電腦呈現(xiàn)出動畫情境(伴圖配音)。

  夏天,森林里悶熱極了,小動物們都熱得透不過氣來。一只小白兔去“動物超市”購物,它在冷飲專柜熊伯伯那兒買了一個圓柱形的雪糕。這一切都被躲在一旁的狐貍看見了,它也去熊伯伯的專柜里買了一個圓錐形的雪糕。小白兔剛張開嘴,滿頭大汗的狐貍拿著一個圓錐形的雪糕一溜煙跑了過來。(動畫中圓柱形和圓錐形的雪糕是等底等高的)

 。2)引導學生圍繞問題展開討論。

  問題一:狐貍貪婪地問:“小白兔,用我手中的雪糕跟你換一個怎么樣?”(如果這時小白兔和狐貍換了雪糕,你覺得小白兔有沒有上當?)

  問題二:(動畫演示)狐貍手上又多了一個同樣大小的圓錐形雪糕。(小白兔這時和狐貍換雪糕,你覺得公平嗎?)

  問題三:如果你是森林中的小白兔,狐貍手中的圓錐形雪糕有幾個時,你才肯與它交換?(把你的想法跟小組交流一下,再向全班同學匯報)

  過渡:小白兔究竟跟狐貍怎樣交換才合理呢?學習了“圓錐的體積”后,大家就會弄明白這個問題。

  【新課講授】

  自主探究,操作實驗

  下面,請同學們利用老師提供的實驗材料分組操作,自己發(fā)現(xiàn)屏幕上的圓柱與圓錐體積之間的關系,解決電腦博士給我們提出的問題。

  出示思考題:通過實驗,你們發(fā)現(xiàn)圓柱的體積和圓錐的體積之間有什么關系?你們的小組是怎樣進行實驗的?

 。1)小組實驗。

  A、學生分6組操作實驗,教師巡回指導。(其中4個小組的實驗材料:沙子、水、水槽、量杯、等底等高的圓柱形和圓錐形容器各一個;另外2個小組的實驗材料:沙子,既不等底也不等高的圓柱形和圓錐形容器各一個,體積有8倍關系的也有5倍關系的。)

  B、同組的學生做完實驗后,進行交流,并把實驗結果寫在黑板上。

  (2)全班交流。

 、俳M織收集信息。

  學生匯報時可能會出現(xiàn)下面幾種情況,教師把這些信息逐一呈現(xiàn)在黑板上:

  A、圓柱的體積正好等于圓錐體積的3倍。

  B、圓柱的體積不是圓錐體積的3倍。

  c、圓柱的體積正好等于圓錐體積的8倍。

  D、圓柱的體積正好等于圓錐體積的5倍。

  E、圓柱的體積是等底等高圓錐體積的3倍。

  f、圓錐的體積是等底等高圓柱體積的。

  ②引導整理信息。指導學生仔細觀察,把黑板上的信息分類整理。(根據(jù)學生反饋的實際情況靈活進行)

  ③參與處理信息。圍繞3倍關系情況討論:請這幾個小組同學說出他們是怎樣通過實驗得出這一結論的?哪個小組得出的結論更科學合理一些?

  圓錐的體積是等底等高圓柱體積的。(突出等底等高,并請學生拿出實驗用的器材,自己比劃、驗證這個結論)引導學生自主修正另外兩個結論。

 。3)誘導反思。為什么有兩個實驗小組的結果不是3倍的關系呢?

 。4)推導公式。嘗試運用信息推導圓錐的體積公式。這里的sh表示什么?為什么要乘?要求圓錐體積需要知道幾個條件?

 。5)解決問題。童話故事中的小白兔和狐貍怎樣交換才公平合理呢?它需要什么前提條件?(動畫演示:等底等高,之后播放狐貍拿著圓錐形雪糕離去的畫面)

  【課堂作業(yè)】

  完成教材第34頁“做一做”第1題。

  先組織學生在練習本上算一算,然后指名匯報。

  答案:13×19×12=76(cm3)

  【課堂小結】

  教師:請你說說知道哪些條件就可以求圓錐的體積?學生自由交流。

  【課后作業(yè)】

  1、完成練習冊中本課時的練習。

  2、教材第35頁第3、4、5題。

  答案:第3題:提示:可以利用直尺、軟尺等工具測量出圓錐形實物的底面直徑(或者底面周長)和高,再根據(jù)V圓錐=1/3sh計算出該物體的體積。

  第4題:(1)25、12(2)423、9

  第5題:(1)×(2)√(3)×

《圓錐的體積》教案4

  目 標:

  1、理解和掌握圓錐體體積的計算方法,并能運用公式求圓錐體的體積,并能解決簡單的實際問題。

  2、通過動手實踐,自主探求圓錐體積的計算方法,培養(yǎng)學生初步的邏輯推理能力和創(chuàng)新意識,發(fā)展空間觀念。

  3、激發(fā)學生熱愛生活,勇于探索、樂于與人合作的情趣。

  重 點:掌握圓錐體積的方法

  難 點:公式的推導

  準 備:沙,圓柱教具若干個,圓錐一個,其中要有一組等底等高的圓柱和圓錐

  教 程:

  一、準備

  同學們,我們以前研究過一些立體圖形,如長方體,正方體,圓柱體,它們的體積各是怎樣計算的呢?

  二、誘發(fā)

  課件演示稻谷豐收的景象。師述:稻谷豐收了,農民伯伯忙著收割稻谷,他們把收好的稻谷堆成一個這樣的圖形(圓錐形谷堆),同學們你們認識嗎?你能算出這堆稻谷的體積嗎?它和圓柱的體積有什么聯(lián)系呢?這就是我們這節(jié)課要學習的內容。

  三、探究釋疑

  1、初次猜想

 、鸥鶕(jù)我們所學過的內容,請同學們猜一猜,圓錐的體積應該怎樣計算?

 、茍A錐的體積是否能用“底面積×高”來計算呢

 、菍W生通過觀察,發(fā)現(xiàn)“底面積×高”不是圓錐的體積,而是與它等底等高的圓柱的體積。

  2、再次猜想

 、磐ㄟ^模型演示,

 、聘鶕(jù)學生回答,從而得到如下結論:

  圓錐的'體積 = ×圓柱的體積(等底等高)

  3、分組實驗進行驗證

 、抛寣W生用三個不同的圓柱體和一個圓錐(其中必有一組等底等高的圓柱和圓錐)來進行實驗。

 、品纸M討論,分組匯報

  圓錐的體積 = ×圓柱的體積(等底等高)

  用字母表示:V=1/3Sh

  4、聯(lián)系實際,進行運用

 、懦鍪纠1,學生嘗試練習,集體訂正。

 、平虒W例2、課件出示:

  麥收季節(jié),張小紅把她家收的小麥堆成一個近似圓錐的麥堆,又給出測量的數(shù)據(jù),讓學生看圖編一道求小麥重量的應用題。

  編好后,分組討論計算

  學生自己列式計算,集體訂正

  四、轉化

  1、基礎題

 、畔旅嬗兴慕M圖形,你能根據(jù)每組圖形中左圖的體積,求出右圖的體積嗎?為什么?

  24立方米 9立方米 12立方米

 、埔粋圓錐的底面直徑是4厘米,高5厘米,它的體積是多少?

  2、提高題

  有一塊正方體的木材,它的棱長是9分米,把這塊木料加工成一個最大的圓柱體,被削去的體積是多少?

  3、思考題

  把一個棱長6厘米的正方體鐵塊和底面直徑、高都是6厘米的圓柱形鐵塊,熔鑄成一個直圓錐體,如果這個直圓錐體和圓柱的底面大小一樣,這個直圓錐體的高是多少厘米?(得數(shù)保留整數(shù))

  五、應用

  1、 基礎題:P44-T3、4

  2、 提高題:P45-T10

  3、 思考題:P45-T11、12

《圓錐的體積》教案5

  教學內容:教材第16~19頁圓錐的認識和體積計算、例1。

  教學要求:

  l.使學生認識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。

  2.使學生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。

  3.培養(yǎng)學生初步的空間觀念和發(fā)展學生的思維能力。

  教具準備:長方體、正方體、圓柱體等,根據(jù)教材第167頁自制的圓錐,演示測高、等底、等高的教具,演示得出圓錐體積等于等底等高圓柱體積的的教具。

  教學重點:掌握圓錐的特征。

  教學難點:理解和掌握圓錐體積的計算公式。

  教學過程:

  一、鋪墊孕伏:

  1.說出圓柱的體積計算公式。

  2.我們已經學過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產中,我們還常?吹较旅嬉恍┪矬w(出示教材第16頁插圖)。這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節(jié)課,就學習圓錐和圓錐的體積。(板書課題)

  二、自主探究:

  1.認識圓錐。

  我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?

  2.根據(jù)教材第16頁插圖,和學生舉的例子通過幻燈片或其他方法抽象出立體圖。

  3.利用學生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。

  (1)圓錐的底面是個圓,圓錐的側面是一個曲面。

  (2)認識圓錐的`頂點,從圓錐的頂點到底面圓心的距離是圓錐的高。(在圖上表示出這條高)提問:圖里畫的這條高和底面圓的所有直徑有什么關系?

  4.學生練習。

  口答練習三第1題。

  5.教學圓錐高的測量方法。(見課本第17頁有關內容)

  6.讓學生根據(jù)上述方法測量自制圓錐的高。

  7.實驗操作、推導圓錐體積計算公式。

  (1)通過演示使學生知道什么叫等底等高。(具體方法可見教材第18頁上面的圖)

  (2)讓學生猜想:老師手中的圓錐和圓柱等底等高,你能猜想一下它們體積之間有怎樣的關系?

  (3)實驗操作,發(fā)現(xiàn)規(guī)律。

  在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關系?得出圓錐的體積是與它等底等高的圓柱體體積的。

  老師把圓柱里的黃沙倒進圓錐,問:把圓柱內的沙往圓錐內倒三次倒光,你又發(fā)現(xiàn)什么規(guī)律?

  (4)是不是所有的圓柱和圓錐都有這樣的關系?教師可出示不等底不等高的圓錐、圓柱,讓學生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的。

  (5)啟發(fā)引導推導出計算公式并用字母表示。

  圓錐的體積=等底等高的圓柱的體積=底面積高

  用字母表示:V=Sh

  (6)小結:要求圓錐體積必須知道哪些條件,公式中的底面積乘以高,求的是什么?為什么要乘以?

  8.教學例l

  (1)出示例1

  (2)審題后可讓學生根據(jù)圓錐體積計算公式自己試做。

  (3)批改講評。注意些什么問題。

  三、鞏固練習

  1.做練習三第2題。

  學生做在課本上。小黑板出示,指名口答,老師板書。錯的要求說明理由。

  2.做練習三第4題。學生書面練習,小組交流,集體訂正。

  四、課堂小結

  這節(jié)課你學習了什么內容?圓錐有怎樣的特征?圓錐的體積怎樣計算?為什么?

  五、課堂作業(yè)

  練習三第3題及數(shù)訓。

  六、板書:

  圓錐

  圓錐的特征:底面是圓,

  側面是一個曲面,展開是一個扇形。

  它有一個頂點和一條高。

  圓柱的體積=底面積高

  圓錐的體積=圓柱體積

  圓錐的體積=底面積高V=Sh

《圓錐的體積》教案6

  一、 教學內容

  九年義務教育六年制小學教科書《數(shù)學》(第一版)六年級第十二冊第二單元。

  二、 教材分析

  1、內容分析:這是本單元實驗探究性較強的知識點,通過學生合作探究,理解并掌握圓錐體積的計算方法,且能加以運用。

  2、教學重點:正確運用公式計算圓錐的體積,學會解決與計算圓錐形物體有關的實際問題。

  3、教學難點:理解圓錐體積公式的推導。

  三、 教學目標

  1、知識教學點:讓學生通過觀察、親自動手做對比實驗、分析、驗證等活動,初步感知圓錐的體積計算公式的由來,能理解并加以運用。

  2、能力訓練點:培養(yǎng)學生的觀察、比較、分析、綜合、概括以及初步的自主探究的能力。

  3、思想滲透點:激發(fā)學生積極探索新知和學習數(shù)學的欲望。

  四、 教、學具準備

  1、教具:量筒(2只)、圓柱和圓錐(等底等高,可裝水)、紅顏色的水、不規(guī)則的石塊。

  2、學具:教師指導用硬塑料紙做3組可盛水的圓柱和圓錐(①等底等高 ②等底不等高 ③等高不等底)、適量的水。

  五、 教學過程

  (一) 創(chuàng)設探究情景,激趣引思

  1、教師行為

  (1) 談話:同學們探究了計算圓柱體積的方法。想不想探究圓錐體積的計算方法呢?今天我們用準備好的學具試一試!

 。2) 演示實驗:先出示實驗器材,讓學生細心觀察比較;在空圓柱里裝滿紅顏色的水,然后倒入一只量筒里;在空圓錐里裝滿紅顏色的水,倒入另一只量筒里,像這樣倒三次。

  (3) 質疑: 通過老師做實驗,同學們看到了什么?想到了什么?發(fā)現(xiàn)了什么?有什么感想?

  2、學生活動

  (1) 聽談話,明確主題。

 。2) 細致入微地觀察演示實驗。

  (3) 四人小組合作討論交流,看到的、想到的。并分組匯報討論結果。(兩只一樣的量筒里水面高度一樣,用空圓錐倒了三次水,空圓柱倒了一次,它們的底面大小及高度一樣,兩只量筒里水的體積相等、空圓錐裝三次的水與空圓柱裝一次的水一樣多等)。

 。4) 親自用教師演示用具驗證討論結果。

 。ㄔO計意圖:通過演示實驗激發(fā)學生的探究興趣,激活學生思維。)

 。ǘ 提出探究假想,實踐驗證

  1、教師行為

  (。﹩⒌希豪蠋熥龅膶嶒瀸ξ覀兘裉斓奶骄炕顒佑惺裁磫l(fā)?請同學們提出自己的設想,并給予各組學生必要的指導,進行小組討論。

 。2)綜述討論結果,提問:所有圓柱的體積都等于圓錐體積的3倍,圓錐體積都等于圓柱體積的1/3,是否正確,為什么?有什么條件限制?再讓學生觀察老師用的實驗器具思考。

  (3)促思:同學們設想的條件哪一種正確?大家沒有量筒,用你們準備的

  學具怎樣才能驗證假設?

 。4)合作探究:創(chuàng)新驗證方案,怎樣讓它具有可操作性,教師適當點撥。

  (5)組織學生用確定的方案進行合作探究,實踐驗證。

 。6)誘導:修正假設,反思結果,得出結論,層層深入。

  2、學生活動

 。1)小組討論,積極交流,達成共識。

  (2)分組匯報討論結果:對今天的學習有幫助,假設空圓柱和空圓錐里裝水的體積近似等于它們的體積;則老師所用的`空圓柱的體積將等于空圓錐體積的3倍,空圓錐的體積就等于空圓柱體積的1/3。

  (3)根據(jù)問題設想條件:圓柱和圓錐、等底等高、等底不等高、等高不等底。

 。4)交流確定驗證方案:分別用三組準備好的空圓錐裝滿水倒入空圓柱里,看哪一組裝3次剛好裝滿。

  (5)分組實驗。

 。6)匯報探究情況:等底等高的一組空圓柱和空圓錐才符合原先假設。

  (7)小結:圓柱的體積等于和它等底等高的圓錐體積的3倍;圓錐體積等于和它等底等高的圓柱體積的1/3.即

  V柱=1/3 V錐=1/3 sh=1/3 ∏r2h

  (設計意圖:培養(yǎng)學生的分析能力和自主探究學習的能力。)

 。ㄈ╈柟烫骄砍晒,深化理解

  1、教師行為

 。1) 鞏固新知:讓學生計算課本例1、例2、做一做,然后集體訂正。

  (2) 強調:計算圓錐體積時,最容易出現(xiàn)的錯誤是什么?

  (3) 引申練習:一個圓錐形零件,已知下列條件,分別求其體積

  ①底面半徑3厘米,高15厘米;

 、诘酌嬷睆5厘米,高10厘米;

 、鄣酌嬷荛L12.56厘米,高10厘米;

  ④底面半徑3厘米,比高少70%。

  2、學生活動

 。1)自主訓練,多思多問。

 。2)總結:計算時,不能忘記特殊數(shù)字“1/3”

 。3)靈活運用公式,找出自己知識的不足。

  (設計意圖:運用探究成果進行強化練習,加深對知識的理解,培養(yǎng)學生綜合運用能力。)

 。ㄋ模 拓展探究思維,邁向生活

  1、教師行為

  質疑:

 。1)出示一個不規(guī)則滑石塊,怎樣求其體積?(教師作指導)

 。2)學校食堂買來一車煤炭,倒堆成圓錐體,量得其底面周長和高分別為12.56米,每立方米煤200元,結果付了1300元,問學校有沒有多花錢?

  2、學生活動

  (1)分組討論,引導得出求其體積的方法:把不規(guī)則的物體(不吸水)放進盛水的容器里,求出上升那部分水的體積也就等于不規(guī)則物體的體積。

 。2)合作探討明確計算方法。

  (設計意圖:解決生活中的實際問題,體現(xiàn)“人人學有價值的數(shù)學,不同的人在數(shù)學上得到不同的發(fā)展”的新課程理念,培養(yǎng)學生的創(chuàng)新意識和實踐能力。)

  教學反思:

  立足教材,根據(jù)本地區(qū)挖掘學生較熟悉的、樂于接受的、具有多方面教育價值,能引起學生思考的素材,真正實現(xiàn)用教材,并加以創(chuàng)新,讓探究成功率提高,激起了學生的學習興趣。在課堂教學中充分發(fā)揮學生的主體性,構建了“激趣引思——實踐驗證——深化理解——邁向生活”的教學模式,促進了學生學習方式的轉變。]

  教學評析:

  教師充分利用教學用具,開發(fā)數(shù)學課程資源,讓學生在探究新知的過程中,進一步發(fā)展空間觀念和應用數(shù)學的能力,實現(xiàn)了讓學生在生活中學數(shù)學、用數(shù)學的愿望。

  在教學過程中與學生積極互動,共同發(fā)展,處理好傳授知識與培養(yǎng)能力的關系,注重培養(yǎng)學生的獨立性和自主性,引導學生觀察、質疑、探究,在實踐中學習,促進學生在教師指導下主動地、富有個性的學習,以學生為本,以問題為中心,以實驗探索為主要手段,以討論為交流方式,以陳述觀點及根據(jù)為要求,把學生推到了探究性學習的前臺,讓學生去想、去說、去做、去表達,去自我評價、去體會科學知識的真諦,促進學生全面發(fā)展。

《圓錐的體積》教案7

  【教材分析】

  本節(jié)課屬于空間與圖形知識的教學,是小學階段幾何知識的重難點部分,是小學學習立體圖形體積計算的飛躍,通過這部分知識的教學,可以發(fā)展學生的空間觀念、想象能力,較深入地理解幾何體體積推導方法的新領域,為學生進一步學習幾何知識奠定良好的基礎。本節(jié)內容是在學生了解了圓錐的特征,掌握了圓柱體積的計算方法基礎上進行教學的,教材重視類比,轉化思想的滲透,直觀引導學生經歷“猜測、類比、觀察、實驗、探究、推理、總結”的探索過程,理解掌握求圓錐體積的計算公式,會運用公式計算圓錐的體積。這樣不僅幫助學生建立空間觀念,還能培養(yǎng)學生抽象的邏輯思維能力,激發(fā)學生的想象力.

  【設計理念】

  數(shù)學課程標準中指出:應放手讓學生經歷探索的過程,在觀察、操作、推理、歸納、總結過程中掌握知識、發(fā)展空間觀念,從而提高學生自主解決問題的能力。

  【教學目標】

  1、知識與技能:掌握圓錐的體積計算公式,能運用公式求圓錐的體積,并且能運用這一知識解決生活中一些簡單的實際問題。

  2、過程與方法:通過“直覺猜想——試驗探索——合作交流——得出結論——實踐運用”探索過程,獲得圓錐體積的推導過程和學習的方法。

  3、情感、態(tài)度與價值觀:培養(yǎng)學生勇于探索的求知精神,感受到數(shù)學來源于生活,能積極參與數(shù)學活動,自覺養(yǎng)成與人合作交流與獨立思考的良好習慣。

  【教學重點】

  圓錐體積公式的理解,并能運用公式求圓錐的體積。

  【教學難點】

  圓錐體積公式的推導

  【學情分析】

  學生已學習了圓柱的體積計算,在教學中采用放手讓學生操作、小組合作探討的形式,讓學生在研討中自主探索,發(fā)現(xiàn)問題并運用學過的圓柱知識遷移到圓錐,得出結論。所以對于新的知識教學,他們一定能表現(xiàn)出極大的熱情。

  【教法學法】

  試驗探究法小組合作學習法

  【教具學具準備】

  多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)

  【教學課時】

  2課時

  【教學流程】

  第一課時

  一、回顧舊知識

  1、你能計算哪些規(guī)則物體的體積?

  2、你能說出圓錐各部分的名稱嗎?

  【設計意圖】通過對舊知識的回顧,進一步為學習新知識作好鋪墊。

  二、創(chuàng)設情景激發(fā)激情

  展示磚工師傅使用的鉛錘體(圓錐),你能測試出它的體積嗎?

  【設計意圖】以生活中的數(shù)學的形式進行設置情景,引疑激趣遷移,激發(fā)學生好奇心和求知欲。(揭示課題:圓錐的體積)

  三、試驗探究合作學習(探討圓柱與圓錐體積之間的關系)

  探究一:(分組試驗)圓柱與圓錐的底和高各有什么關系?

  1、猜想:猜想它們的底、高之間各有什么關系?

  2、試驗驗證猜想:每組拿出圓柱、圓錐各1個,分組試驗,試驗后記錄結果;

  3、小組匯報試驗結論,集體評議:(注意匯報出試驗步驟和結論)

  4、教師介紹數(shù)學專用名詞:等底等高

  【設計意圖】通過探究一活動,初步突破了本課的難點,為探究二活動活動開展作好了鋪墊。

  探究二:(分組試驗)研討等底等高圓柱與圓錐的體積之間有什么關系?

  1、大膽猜想:等底等高圓柱與圓錐體積之間的關系

  2、試驗驗證猜想:每組拿出水槽(裝有適量的水),通過試驗,你發(fā)現(xiàn)了圓柱的體積和圓錐的體積有什么關系?邊試驗邊記錄試驗數(shù)據(jù)(教師巡視指導每組的試驗)

  3、小組匯報試驗結論(提醒學生匯報出試驗步驟)

  教學預設:

  (1)圓椎的體積是圓柱體積的3倍;

  (2)圓錐的體積是圓柱體積的三分之一;

  (3)當?shù)鹊椎雀邥r,圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。

  4、通過學生匯報的試驗結論,分析歸納總結試驗結論。

  5、你能用字母表示出它們的關系嗎?要求圓錐的體積必須知道什么條件呢?(學生反復朗讀公式)

  【設計意圖】通過學生分組試驗探究,在實驗過程中自主猜想、感知、驗證、得出結論的過程,充分調動學生主動探索的意識,激發(fā)了學生的求知欲,培養(yǎng)了學生的動手能力,突破了本課的難點,突出了教學的重點。

  探究三:(伸展試驗---演示試驗)研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關系。

  1、觀察老師的試驗,你發(fā)現(xiàn)了圓柱與圓錐的底和高各有什么關系?

  2、觀察老師的'試驗,你發(fā)現(xiàn)了不等底等高的圓柱與圓錐的體積之間還有三分之一的關系嗎?

  3、學生通過觀看試驗匯報結論。

  4、教師引導學生分析歸納總結圓錐體積是圓柱體積的三分之一所存在的條件。

  5、結合探究二和探究三,進一步引導學生掌握圓錐的體積公式。

  【設計意圖】通過教師課件演示試驗,進一步讓學生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進一步加強學生對圓錐體積公式理解,再次突出了本課的難點,培養(yǎng)了學生的觀察能,分析能力,邏輯思維能力等,進一步讓學生從感性認識上升到了理性認識。

  四、實踐運用提升技能

  1、判斷題:【題目內容見多媒體展示】獨立思考---抽生匯報---說明理由---師生評議

  2、口答題:【題目內容見多媒體展示】獨立思考---抽生匯報---學生評議

  3、拓展運用:【課本例題3】學生分析題意---小組合作解答---學生解答展示---師生評議

  【設計意圖】通過判斷題、口答題題型的訓練,及時檢查學生對所學知識的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學生提供思維發(fā)展的空間,讓他們有跳起來摘果子的機會,以達到培養(yǎng)能力、發(fā)展個性的目的。

  五、談談收獲:

  這節(jié)課你學到了什么呢?

  六、課堂作業(yè):

  1、做在書上作業(yè):練習四第4、7題

  2、坐在作業(yè)本上作業(yè):練習四第3題

  【課后反思】

  【板書設計】

《圓錐的體積》教案8

  教學內容:教材第13-14頁圓錐的認識和體積計算,便如“練一練”,練習三第1-5題。

  教學要求:

  1、使學生認識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。

  2、使學生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。

  3、培養(yǎng)學生初步的空間觀念和發(fā)展學生的思維能力。

  教學過程:

  一、復習引新

  1、說出圓柱的體積計算公式。

  2、我們已經學過了長主體、正方體及圓柱體。在日常生活和生產中,我們還常?吹较旅嬉恍┪矬w(出示教材第13頁插圖)。這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是圓錐。今天這節(jié)課,就學習圓錐和圓錐的體積。

  二、教學新課

  1、認識圓錐。我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?

  2、利用學生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。

 。1)圓錐的底面是個圓,圓錐的側面是一個曲面。

 。2)認識圓錐的頂點,從圓錐的頂點到底面圓以后距離是圓錐的高。

  3、學生練習?诖鹁毩暼1題。

  4、教學圓錐高的測量方法

  5、讓學生根據(jù)上述方法測量自制圓錐的高。

  6、實驗操作,推導圓錐體積計算公式。

 。1)通過演示使學生知道什么叫等底等高。

 。2)讓學生猜想:老師手中的圓錐和圓柱等底等高,你能猜想一下它們體積之間有什么樣的.關系?

  (3)實驗操作,發(fā)現(xiàn)規(guī)律。圓錐的體積是與它等底等高的圓柱體體積的。

  (4)是不是所有的圓柱和圓錐都有這樣的關系?只有等底等高的圓錐才是圓柱體積的。

 。5)啟發(fā)引導推導出計算公式并用字母表示。V=sh

 。6)小結,要求圓錐體積必須知道哪些條件?公式中的底面積乘以高,求的是什么?為什么要乘以?

  7、教學例1

 。1)出示例1。

 。2)審題后讓學生根據(jù)圓錐體積計算公式自己試做。

 。3)批改講評。注意些什么問題。

  三、鞏固練習

  1、做“練一練”第2題。

  強調:要乘以。

  2、做練習三第2題。

  學生做在課本上。小黑板出示,指名口答,老師板書,錯的要求說明理由。

  3、做練習三第3題。

  讓學生做在課本上。

  第(3)、(4)題讓學生說說是怎樣想的。

  四、課堂小結

  這節(jié)課你學習了什么內容?圓錐有怎樣的特征?圓錐的體積怎樣計算?為什么?

  五、課堂作業(yè)

  練習三第4、5題。

《圓錐的體積》教案9

  教學內容

  教科書第40~41頁例2,練習九第3~7題。

  1.使學生進一步理解并掌握圓錐體積的計算公式,能較熟練地運用圓錐的體積公式解決問題。

  2.在解決問題的過程中,學會思考,增強思維的靈活性,培養(yǎng)學生有序思考的習慣。

  3.在探究問題中,發(fā)展學生的空間觀念。

  運用圓錐體積的計算方法解決生活中的問題。

  靈活運用圓錐的體積計算公式解決問題。

  小黑板

  一、復習引入課題

  教師:怎樣計算圓錐的體積?

  學生回答,教師板書體積公式:V=13SH

  教師:誰能說說圓錐的體積計算公式是怎么推導出來的?

  抽學生簡要敘述圓錐的推導過程。

  教師:要求圓錐的體積,應該知道哪些條件?

  讓學生弄清要求圓錐的體積應該知道圓錐的底面積和高。

  教師:這節(jié)課我們就利用圓錐體積的計算方法解決生活和學習中常見的數(shù)學問題。

  板書課題:圓錐的體積二

  二、探究新知

  1.教學例2

  教師用投影儀出示例2。

  一煤堆的底面周長18.84M,高1.8M,這個煤堆近似一個圓錐體。準備用載重5噸的車來運。一次運走這堆煤,需要多少輛車?(1M3煤重1.4噸)

  教師要求學生帶著問題理解題意。用投影儀出示問題。

 。1)這道題講的是什么事情?知道哪些條件?要求什么問題?

 。2)要求這堆煤的.質量,必須先求什么?

  (3)要求煤的體積應該怎么辦?

  (4)這題應先求什么?再求什么?最后求什么?

  教師鼓勵學生獨立思考,教師適時點撥。

  反饋:要求學生用完整的語言敘述題意。

  教師抽學生敘述思考過程,要求語言簡潔,思路清晰。

  在反饋過程中,盡量多抽幾個學生敘述。

  通過討論,使學生明白,這題的關鍵是求出圓錐形煤堆的體積,也就求出了煤堆的質量。

  教師抽學生上臺板算。

  板書:

  煤堆的底面積:3.14×(18.842×3.14)2=3.14×9=28.26(M2)

  煤堆的體積:13×28.26×1.8=16.956(M3)

  1.4×16.956÷5≈5(輛)答:……

  教師:最后的結果為什么要取整數(shù)部分再加1?

  讓學生明白裝了4輛車后,剩下的雖然不夠裝一車,仍然要用一輛車裝,因此要取整數(shù)。

  教師:在實際生活和學習中,經常會遇到不知道底面積的情況,這時怎樣求圓錐的體積?

  2.小結

  要求圓錐的體積必須知道底面積和高,如果只知道底面半徑、底面直徑或底面周長和高,要先算出圓錐的底面積,再利用圓錐的體積公式求出圓錐的體積。學會具體問題具體分析。

  三、鞏固練習

  1.教師用投影儀出示教科書第42頁第3題

  觀察圖形,獨立解答。抽二生上臺板算。

  讓學生理解此題應先算出圓錐的底面積,才能求出容器的體積。

  2.解答教科書第42頁第4題

  學生獨立解答,抽生反饋說出思考過程。

  通過這一題的練習,體會圓錐與圓柱之間的關系。

  3.解答練習九第6題

  學生獨立完成,小組交流,展示思考過程,先算什么,再算什么。解答此題的關鍵是抓住體積不變進行解答。

  4.發(fā)展練習

  有一個底面周長是31.4DM,高9DM的圓錐形容器里裝滿了黃豆,現(xiàn)在要把這些黃豆放入另一個高9DM的圓柱形容器里,剛好裝滿。這個圓柱形容器的底面直徑有多大?

  教師引導學生讀題,理解題意。

  弄清已知條件和問題,根據(jù)條件尋找中間問題。明白先算什么,再算什么。

  學生小組內交流,探討解決方案。

  反饋:學生用完整清晰的語言敘述解題思路。

  弄清解決這題的關鍵是抓住黃豆的體積不變,即圓柱和圓錐的體積相等。這是解答此題的突破口。教科書練習九第5題,第7題。教師:今天這節(jié)課我們學了什么知識?通過這節(jié)課的學習,對圓錐的體積計算更熟悉了。知道圓錐和圓柱的知識與我們的生活息息相關,在解決實際問題時,應有序思考,靈活運用知識。

  例2……

  煤堆的底面積:3.14×(18.842×3.14)2=3.14×9=28.26(M2)

  煤堆的體積:13×28.26×1.8=16.956(M3)

  1.4×16.956÷5≈5(輛)答:

《圓錐的體積》教案10

  教學內容:教材第15頁例2,“練一練”,練習三第6——11題。

  教學要求:使學生進一步掌握圓錐的體積計算方法,能根據(jù)不同的條件計算圓錐的體積,能應用圓錐體積解決一些簡單的`實際問題。

  教學過程:

  一、復習舊知

  1、口算)練習三第6題)

  2、復習體積計算

 。1)提問:圓錐的體積怎樣計算?為什么圓錐體積V=sh?

 。2)口答下列各圓錐的體積。

 、俚酌娣e3平方分米,高2發(fā)米。

  ②底面積4平方分米,高4。5分米。

  3、引入新課。

  今天這節(jié)課,我們練習圓錐體積的計算,通過練習,還要能應用圓錐體積計算的方法解決一些簡單的實際問題。

  二、教學新課。

  1、教學例2

  出示例題,讓學生讀題。

  提問:你們認為這道題要先求什么,再求這堆沙的重量?

  指名板演,其他學生做在練習本上。

  2、組織練習

 。1)做“練一練”第1題。

  指名三人板演,其余學生思考第(1)、(2)題怎樣做,把第(3)題做在練習本上。

  (2)做“練一練”第2題。

  指名一人板演,其余學生做在練習本上。

 。3)討論練習三第11題。

  出示圓錐形模型,提問:你有什么辦法算出它的體積嗎?需要測量用些數(shù)據(jù)?怎樣測量直徑和高。

  請同學們回去測量你用第129頁圖制作的圓錐,求出它的體積來。

  三、課堂小結。

  這節(jié)課練習了圓錐的體積計算和應用。計算體積需要知道底面積和高。如果沒有告訴我人底面積,我們要先求半徑算出底面積,再計算體積。應用圓錐體積計算,有時候還可以計算出圓錐形物體的重量。

  四、布置作業(yè)。

  課堂作業(yè):練習三第7—9題。

  家庭作業(yè):練習三第10、11題。

《圓錐的體積》教案11

  教學目標:

  1、知識與技能

  理解圓錐體積公式的推導過程,初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積。

  2、過程與方法

  通過操作、實驗、觀察等方式,引導學生進行比較、分析、綜合、猜測,在感知的基礎上加以判斷、推理來獲取新知識。

  3、情感態(tài)度與價值觀

  滲透知識是“互相轉化”的辨證思想,養(yǎng)成善于猜測的習慣,在探索合作中感受教學與我的生活的密切聯(lián)系,讓學生感受探究成功的快樂。

  教學重點:

  掌握圓錐的體積計算方法及運用圓錐的體積計算方法解決實際問題。

  教學難點:

  理解圓錐體積公式的推導過程。

  教具學具:

  不同型號的圓柱、圓錐實物、容器;沙子、水、杯子;多媒體課件一套。

  教學流程:

  一、創(chuàng)設情境,提出問題

  師:五一節(jié)放假期間,老師帶著自己的小外甥去商場購物,正巧商場在搞冰淇淋促銷活動。促銷的冰淇淋有三種(課件出示三個大小不同的冰淇淋),每種都是2元錢,小外甥吵著鬧著要買一只,請同學們幫老師參考一下買哪一種合算?

  生:我選擇底面的;

  生:我選擇高是的;

  生:我選擇介于二者之間的。

  師:每個人都認為自己選擇的哪種最合算,那么誰的意見正確呢?

  生:只要求出冰淇淋的體積就可以了。

  師:冰淇淋是個什么形狀?(圓錐體)

  生:你會求嗎?

  師:通過這節(jié)課的學習,相信這個問題就很容易解答了。下面我們一起來研究圓錐的體積。并板書課題:圓錐的體積。

  二、設疑激趣,探求新知

  師:那么你能想辦法求出圓錐的體積嗎?

 。▽W生猜想求圓錐體積的方法。)

  生:我們可以利用求不規(guī)則物體體積的方法,把它放進一個有水的容器里,求出上升那部分水的體積。

  師:如果這樣,你覺得行嗎?

  教師根據(jù)學生的回答做出最后的`評價;

  生:老師,我們前面學過把圓轉化成長方形來研究,我想圓錐是不是也可以這樣做呢?

  師:大家猜一猜圓錐體可能會轉化成哪一種圖形,你的根據(jù)是什么?

  小組中大家商量。

  生:我們組認為可以將圓錐轉化成長方體或正方體,比如:先用橡皮泥捏一個圓錐體,再把這塊橡皮泥捏成長方體或正方體。

  師:此種方法是否可行?

  學生進行評價。

  師:哪個小組還有更好的辦法?

  生:我們組認為:圓錐體轉化成長方體后,長方體的長、寬、高與圓錐的底面和高之間沒有直接的聯(lián)系。如果將圓錐轉化成圓柱,就更容易進行研究。)

  師:既然大家都認為圓錐與圓柱的聯(lián)系最為密切,請各組先拿出學具袋的圓錐與圓柱,觀察比較他們的底與高的大小關系。

  1、各小組進行觀察討論。

  2、各小組進行交流,教師做適當?shù)陌鍟?/p>

  通過學生的交流出現(xiàn)以下幾種情況:

  一是圓柱與圓錐等底不等高;

  二是圓柱與圓錐等高不等底;

  三是圓柱與圓錐不等底不等高;

  四是圓柱與圓錐等底等高。

  3、師啟發(fā)談話:現(xiàn)在我們面前擺了這么多的圓柱和圓錐,我們是否有必要把每一種情況都進行研究?能否找到一種既簡便又容易操作且能代表所有圓柱和圓錐關系的一組呢?(小組討論)

  4、小組交流,在此環(huán)節(jié)著重讓學生說出選擇等底等高的圓錐體與圓柱體進行探究的理由。

  師:我們大家一致認為應該選擇等底等高的一組,那么我們就跟求圓柱體的體積一樣,就用“底面積×高”來表示圓錐體的體積行不行?為什么?

  師:圓錐體的體積小,那你猜測一下這兩個形體的體積的大小有什么樣的關系?

  生:大約是圓柱的一半。

  生:……

  師:到底誰的意見正確呢?

  師:下面請同學們三人一組利用你桌子的學具,找出兩組等底等高的圓錐與圓柱,共同探討它們之間的體積關系驗證我們的猜想,不過在實驗前先閱讀實驗要求,(課件演示)只有目標明確,才能更好的合作。開始吧!

  要求:

  實驗材料,任選沙、米、水中的一種。

  實驗方法可選擇用圓錐向圓柱里倒,到滿為止;或用圓柱向圓錐里倒,到空為止。

 。ㄉM行實驗操作、小組交流)

  師:

  誰來匯報一下,你們組是怎樣做實驗的?

  通過做實驗,你們發(fā)現(xiàn)它們有什么關系?

  生:我們利用空圓柱裝滿水到入空圓錐,三次倒完。圓柱的體積是等底等高圓錐體積的三倍。

  生:我們利用空圓錐裝滿米到入空圓柱,三次倒?jié)M。圓錐的體積是等底等高圓柱的體積的1/3。)

  師:同學們得出這個結論非常重要,其他組也是這樣的嗎?生略

  師:請看大屏幕,看數(shù)學小博士是怎樣做的?(課件演示)

  齊讀結論:

  師:你能根據(jù)剛才我們的實驗和課件演示的情況,也給圓錐的體積寫一個公式?

  (小組討論,得出圓錐的體積公式,得到以下公式:圓柱體積÷3=圓錐體積,則V圓錐=sh÷3即V圓錐=1/3sh

  師:同學們剛才我們得到了圓錐的體積公式,(請看課件)你能求出三種冰淇淋的體積?

  (噢!三種冰淇淋的體積原來一樣大)

  聯(lián)系生活,拓展運用:

  本練習共有三個層次:

  1、基本練習

  (1)判斷對錯,并說明理由。

  圓柱的體積相當于圓錐體積的3倍。()

  一個圓柱木料,把它加工成的圓錐,削去的部分的體積和圓錐的體積比是()

  一個圓柱和一個圓錐等底等高體積相差21立方厘米,圓錐的體積是7立方厘米。()

  (2)計算下面圓錐的體積。(單位:厘米)

  s=25、12 h=2、5

  r=4,h=6

  2、變形練習

  出示學校沙堆:我班數(shù)學小組的同學利用課余時間測量了那堆沙子,得到了以下信息:底面半徑:2米,底面直徑4米,底面周長12.56米,底面積:12.56平方米,高1.2米

 。1)、你能根據(jù)這些信息,用不同的方法計算出這堆沙子的體積嗎?

 。2)、找一找這些計算方法有什么共同的特點?V錐=1/3Sh

  (3)、準備把這堆沙填在一個長3米,寬1.5米的沙坑里,請同學們算一算能填多深?

  3、拓展練習

  一個近似圓錐形的煤堆,測得它的底面周長是31.4米,高是2.4米。如果每立方米煤重1.4噸,這堆煤大約重多少噸?

  整理歸納,回顧體驗

 。ㄍㄟ^小結展示學生個性,學生在學習中的自我體驗,使孩子情感態(tài)度,價值觀得到升華。)

《圓錐的體積》教案12

  教學目標

  1、知識與技能目標:使學生理解和掌握圓錐體積的計算公式,會運用公式計算圓錐的體積并解決簡單的實際問題。

  2、過程與方法:在推導公式過程中,通過小組合作、動手實驗的方法,培養(yǎng)學生分析、推理的能力及抽象概括能力。

  3、態(tài)度、情感、價值觀:在探究公式的過程中,向學生滲透“事物之間是相互聯(lián)系”的,并通過活動,使學生形成良好的合作探究意識。

  教學重難點

  教學重點:掌握圓錐體積的計算公式。

  教學難點:圓錐體積公式的推導過程。

  教學過程

  一、復習舊知,情景導入

  1、怎樣計算圓柱的體積?

  2、一個圓柱的底面積是60平方分米,高

  是15分米,它的體積是多少立方分米?

  3、說一說圓錐有哪些特征?

  (1)頂部:

 。2)底面:

 。3)側面:

 。4)高:

  4、我們學習了圓柱的體積,還認識了圓錐體。

  同學們看今年又是一個豐收年,農民伯伯可高興了,你能幫他們計算收了多少糧食嗎?也就是求圓錐的體積。圓錐的體積怎樣計算呢?它又是怎樣推導出來了呢?這節(jié)課我們就來研究這個問題。(板書課題:圓錐的體積)

  二、新課

  1、引導學生借助圓柱,探討圓錐的體積公式。

 、、猜:圓錐的體積怎樣計算呢?大膽猜一下。

  ②、圓錐的體積公式是怎樣推導的呢?你有什么想法?小組內討論。

  2、下面我們就用實驗的方法來推導圓椎的體積公式。

  老師提供了實驗用具,(每組有1個圓柱和一個圓錐實驗杯,一瓶礦泉水)

 。1)引導學生觀察用來實驗的圓錐、圓柱的特點:圓柱和圓錐都是等底等高(師板書:等底等高)

  (2)學生實驗:

  你想怎么做實驗?小組內議一議,老師指導倒一下水。請同學們以小組為單位進行實驗,在實驗中,注意填好實驗報告表。(大屏幕出示實驗報告表)

  A:你們小組是怎樣進行實驗的?

  B:通過實驗,你們發(fā)現(xiàn)了所給的圓錐、圓柱在體積上有什么關系?

  C:根據(jù)這個關系怎樣求出圓錐的體積?學生匯報,完成計算公式的推導。

  3、同學們一定有不少的收獲和發(fā)現(xiàn),下面我們來交流一下。

  要求:小組內先交流一下,選三四名同學到前面來匯報。哪個小組同學匯報?哪個小組同學補充?(學生實驗并講解,教師糾正:實驗總是不十分準確,有可能差點。)

  一名學生匯報,師板書。

  生:我們把圓錐裝滿水,倒入這個圓柱體當中,正好倒了3次倒?jié)M,得出圓錐的體積等于這個圓柱的體積的1/3,因為圓柱的體積v=sh,所以圓錐的體積v =1/3sh

 。ń處煱鍟﹫A錐的體積= 1/3 ×底面積×高

  等底等高V=1/3Sh(圓柱的體積怎樣求?圓錐的體積怎樣求?)

  4、反饋。同學們經過實驗,發(fā)現(xiàn)了用來實驗的圓錐的體積等于圓柱的體積的1/3,老師也想做實驗:出示一個非常大的圓柱,一個很小的圓錐,這個圓柱的'體積是圓錐體積的3倍嗎?(為什么?)

  我們已經推導出了圓錐的體積公式V、S、h表示什么?利用這一關系推導出圓錐的體積:V錐=1/3 Sh)

  圓柱的體積是與它等底等高圓錐體積的3倍。

  圓錐的體積是與它等底等高圓柱體積的1/3 。

  三、鞏固應用

  1、如果小麥堆的底面半徑為2米,高是1.5米。你能計算出小麥堆的體積嗎?

 。ㄒ幻麑W生板演并匯報)學生講解。

  答:這個小麥堆的體積是6.28立方厘米。注意:計算公式上有無漏洞、計算上的指導(約分)單位名稱上的指導(立方)。

  2、想一想。議一議。說一說:

 。1)已知圓錐的底面半徑r和高h,如何求體積V?

  (2)已知圓錐的底面直徑d和高h,如何求體積V?

 。3)已知圓錐的底面周長C和高h,如何求體積V?

  4、考考你:

  有一根底面直徑是6厘米,長是15厘米的圓柱形鋼材,要把它削成與它等底等高的圓錐形零件。要削去鋼材多少立方厘米?

  四、課堂小結

  這節(jié)課你有什么收獲?

  板書:圓錐的體積

  圓錐的體積=1/3 ×底面積×高

《圓錐的體積》教案13

  教學目的:使學生系統(tǒng)掌握關于圓柱和圓錐的基礎知識,進一步了解圓柱和圓錐的關系,熟練運用所學公式計算解答實際問題;

  教學準備:幻燈片、電腦制圖

  教學過程:

  一. 出示課題,引人復習內容;

  1.同學們,今天這節(jié)課,我們要進行圓柱體和圓錐體體積的復習;

  板書課題

  2.圓柱體的體積怎么求?

  板書:V圓柱=Sh

  3.圓錐體的體積怎么求?

  板書:V圓錐=1/3 Sh

  4.公式中的 s、h分別表示什么?1/3表示什么?

  小結:求圓柱體和圓錐體的體積,首先要正確應用公式。

  板書:1.正確應用公式

  當題目中沒有直接告訴我們底面積,只給出底面的半徑、直徑或周長時,求它們的體積必須先求出什么?

  二. 基礎練習

  根據(jù)已知條件求圓柱體和圓錐體的底面積(幻燈出示)

  計算這些形體的體積:

  (1)S底=1.5 平方米 h=5 米 求V圓柱

  (2)S底=1.5 平方米 h=5 米 求V圓錐

  (3)r=10分米 h=2 米 求V圓柱

  (4)C=6.28米 h=6 米 求V圓錐

  (1)、 (2)兩題條件相同,所求不同;

  板書:2. 圓錐體積一定要乘 1/3

  (3)、 (4)兩題都要先求出底面積;

  板書:3. 單位名稱要統(tǒng)一

  三. 實際應用練習:

  我們還可應用到生活中去解決一些實際問題:(幻燈出示)

  1.一根圓柱形鋼材長2米,底面周長為6.28厘米,如果1立方厘米鋼重8克,100根這樣的鋼材重多少千克?

  默讀后問同學:做這道題前有沒有準備工作要做?(單位要統(tǒng)一)

  2.一個圓錐形麥堆,底面直徑4米,高1.5米,按每立方米麥重700千克算,這堆麥重多少千克?

  默讀后問同學:要注意麥堆是什么形狀?

  請兩位同學板演,其余在本子上自練;

  3.小結:在解這兩題時都用到了什么計算?

  四. 提高練習:

 。ɑ脽舫鍪荆┰谝恢坏酌姘霃綖30厘米的圓柱形水桶里,放入一段底面半徑為10厘米的圓錐形鋼材,水面升高了5厘米,這段鋼材高為多少?

 。娔X出示圖案)觀察水面變化情況,求什么?

  1.鋼材是什么形狀?求圓錐體的高用什么方法?h=3V/S,3V表示什么?

  2. S可以通過哪個條件求?( r=10厘米)

  3.體積是什么呢?(電腦屏幕逐步演示)

  (1)當鋼材放入時水面上升,取出時水面下降,和什么有關?

  (2)放入時水面為什么會上升?

  (3)圓錐體占據(jù)了水桶里哪一部分水的`體積?

  (4)上升的水的體積等于什么?

  (5)求圓錐形鋼材的體積就是求什么?

  (6)求這部分水的體積可通過哪些條件求?(r=30厘米,h=5厘米)

  (7)板演,同學自練;

  五. 圓柱體、圓錐體之間的關系是很密切的,下面我們來研究一下:(電腦出示畫面、公式)

  1.當圓柱體與圓錐體等底等高時,圓柱的體積是圓錐體積的3倍;(逆向)

  2.當圓柱體與圓錐體體積相等,底面積相等時,圓錐的高是圓柱的3倍;

  3.當圓柱體與圓錐體體積相等,高也相等時,圓柱的底面積是圓錐底面積的1/3,圓錐底面積是圓柱底面積的3倍。

  六、總結:

  這節(jié)課我們復習了什么?

《圓錐的體積》教案14

  教學內容:

  第25~26頁,例2、例3及練習四的第3~8題。

  教學目的:

  1、過分小組倒水實驗,使學生自主探索出圓錐體積和圓柱體積之間的關系,初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積,解決實際生活中有關圓錐體積計算的簡單問題。

  2、已有的生活和學習經驗,在小組活動過程中,培養(yǎng)學生的動手操作能力和自主探索能力。

  3、過小組活動,實驗操作,巧妙設置探索障礙,激發(fā)學生的自主探索意識,發(fā)展學生的空間觀念。

  教學重點:

  掌握圓錐體積的計算公式。

  教學難點:

  正確探索出圓錐體積和圓柱體積之間的關系

  教具準備:

  每生準備一組等底等高的圓柱和圓錐模具,大米,水,沙子等

  教學過程:

  一、復習

  1、圓錐有什么特征?(使學生進一步熟悉圓錐的特征:底面、側面、高和頂點)

  2、圓柱體積的計算公式是什么?

  指名學生回答,并板書公式:圓柱的體積=底面積高。

  二、新課

  1、教學圓錐體積的計算公式。

 。1)回憶圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的.

  (2)圓錐的體積該怎樣求呢?能不能也通過已學過的圖形來求呢?(指出:我們可以通過實驗的'方法,得到計算圓錐體積的公式)

 。3)拿出等底等高的圓柱和圓錐各一個,通過演示,使學生發(fā)現(xiàn)這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?組織學生實驗分組合作學習

 。4)先在圓錐里裝滿水,然后倒入圓柱。讓學生注意觀察,倒幾次正好把圓柱裝滿?(教師讓學生注意,記錄幾次,使學生清楚地看到倒3次正好把圓柱裝滿。)

 。5)這說明了什么?(這說明圓錐的體積是和它等底等高的圓柱的體積的 )

  學生敘述實驗過程并總結結論,得出計算公式

  板書:圓錐的體積= 1/3圓柱的體積=1/3 底面積高,

  字母公式:V= 1/3Sh

  2、教學練習四第3題

  這道題已知什么?求什么?已知圓錐的底面積和高應該怎樣計算?

《圓錐的體積》教案15

  【教學內容】九年義務教育六年制小學數(shù)學第十二冊第42-43頁。

  【教學目的】

  1、使學生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積。

  2、培養(yǎng)學生初步的空間觀念、邏輯思維能力、動手操作能力。

  3、向學生滲透知識間"相互轉化"的辯證唯物主義思想,在聯(lián)系實際中對學生進行學習目的方面的思想教育。

  【教學重點】圓錐的體積計算。

  【教學難點】圓錐的體積公式推導。

  【教學關鍵】圓錐的體積是與它等底等高的圓柱體積的三分之一。

  【教具準備】簡易多媒體、等底等高的圓柱和圓錐空心實物各一個。

  【學具準備】三種空心圓錐和圓柱實物各一個

  【教學過程】

  一、復習

  1、圓柱的體積公式是什么?用字母怎樣表示?

  2、求下列各圓柱的體積。(口答)

 。1)底面積是5平方厘米,高是6厘米。

 。2)底面半徑4分米,高是10分米。

 。3)底面直徑2米,高是3米。

  師:剛才我們復習了圓柱的體積公式并應用這個公式計算出了圓柱的體積,那么圓柱和圓錐有什么關系呢?這節(jié)課我們就來研究圓錐的體積。(板書:圓錐的體積)

  二、新課教學

  師:圓錐的底面是什么形狀的?什么是圓錐的高?請拿出一個同學們自己做的圓錐講一講。

  生:圓錐的底面是圓形的。

  生:從圓錐的頂點到底面圓心的距離是圓錐的高。

  師:你能上來指出這個圓錐的高嗎?

  師:很好,因為圓錐的高我們一般無法到里面去測量,所以常常這樣量出它的高。

  師:你們看到過哪些物體是圓錐形狀的?(略)

  師:對。在生活中有很多圓錐形的物體。

  師:剛才我們已經認識了圓錐,F(xiàn)在我們再來研究圓錐的體積。請同學們拿出一對等底等高圓錐和圓柱。想一想用什么辦法能研究出等地等高的圓錐和圓柱的體積之間存在什么關系,然后把你的想法放在小組中交流,再分工進行實驗。下面我們采用實驗的方法來推導圓錐體的體積公式(邊說邊演示),先在圓錐內裝滿水,然后把水倒入圓柱內,看看幾次可將圓柱倒?jié)M。現(xiàn)在我們分小組做實驗,大家邊做邊討論實驗要求,如有困難可以看書第23頁。

  出示小黑板:

  1、圓錐的體積和同它等底等高的圓柱的體積有什么關系?

  2、圓錐的體積怎么算?體積公式是怎樣的?

  學生分組做實驗,老師巡回指導。

  師:我們先來回答第一個問題。在你們做實驗用的圓錐的體積和同它等底等高的圓柱的體積有什么關系?

  生:圓柱的體積是圓錐體積的3倍。

  生:圓錐的體積是同它等底等高的圓柱體權的1/3。

  板書:圓錐的體積等于同它等底等高的圓柱體積的1/3。

  師:得出這個結論的同學請舉手。(略)你們是怎么得出這個結論的呢?

  生:我們先在圓錐內裝滿沙,然后倒人圓柱內。這樣倒了三次,正好將圓柱裝滿。所以,圓錐的體積是同它等底等高的圓柱體積的`1/3。

  師:說得很好。那么圓錐的體積怎么算呢?

  生:可以先算出與它等底等高的圓柱的體積,用底面積乘以高,再除以3,就是圓錐的體積。

  師:誰能說說圓錐的體積公式。

  生:圓錐的體積公式是V=1/3sh。

  師:老師也做了一個同樣實驗請同學認真看一看。想一想有什么話對老師說嗎?請看電視。

  師:請大家把書翻到第42頁,將你認為重要的字、詞、句圈圈劃劃,并說說理由。

  生:我認為"圓錐的體積V等于和它等底等高的圓柱體積的三分之一。"這句話很重要。

  生:我認為這句話中"等底等高"和"三分之一"這幾個字特別重要。

  師:大家說得很對,那么為什么這幾個字特別重要?如果底和離不相等的圓錐和圓柱有沒有三分之一這個關系呢?我們也來做個實驗。大家還有兩個是等底不等高的圓錐和圓柱,請同學們用剛才做實驗的方法試試看。

  師:等底不等高或者等高不等底的圓錐體積不是圓柱體積的1/3。師:可見圓錐的體積等于圓柱體積的三分之一的關鍵條件是等地等高。

  師:下面我們就根據(jù)"等底等高的圓錐體積是圓柱體積的1/3"這個關系來解決下列問題。

  例l:一個圓錐形零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?

  (兩名學生板演,老師巡視)

  師:這位同學做的對不對?

  生:對!

  師:和他做的一-樣的同學請舉手。(絕大多數(shù)同學舉手)

  師:那么這位同學做錯在哪里呢?(指那位做錯的同學做的)

  生:他漏寫了1/3。用底面積乘以高算出來的是圓柱的體積,圓錐的體積還要再乘以1/3。

  師:對了。剛才我們通過實驗知道了圓錐的體積等于同它等底等高的圓柱體積的三分之一,從而推導出圓錐的體積計算公式,即V=1/3sh。我們在用這個公式計算圓錐的體積時,要特別注意,1/3不能漏掉。

【《圓錐的體積》教案】相關文章:

[經典]圓錐的體積教案11-17

《圓錐的體積》教案08-12

圓錐的體積01-16

圓錐的體積教案15篇08-08

圓錐的體積教案(15篇)10-02

圓錐的體積教案(精選18篇)03-08

《圓錐的體積》說課稿08-29

圓錐的體積說課稿07-02

圓錐的體積小學數(shù)學教案05-28