丁香花无码AV在线,欧美日韩国产色,年轻人手机在线免费视频,伊人成人在线,可以直接免费观看的av网站,日本三级香港三级人妇99,亚洲免费二区

一元二次方程教案

時間:2025-09-14 09:23:54 教案 我要投稿

(經(jīng)典)一元二次方程教案

  作為一名教學(xué)工作者,就難以避免地要準(zhǔn)備教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展。那么問題來了,教案應(yīng)該怎么寫?下面是小編為大家收集的一元二次方程教案,歡迎閱讀與收藏。

(經(jīng)典)一元二次方程教案

一元二次方程教案1

  【學(xué)習(xí)目標(biāo)】

  1.能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元二次方程,體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學(xué)模型.

  2.能根據(jù)具體問題的實際意義,檢驗結(jié)果是否合理.

  【教學(xué)重點】列一元二次方程解有關(guān)傳播問題、平均變化率問題的應(yīng)用題

  【教學(xué)難點】發(fā)現(xiàn)傳播問題、平均變化率問題中的等量關(guān)系

  【學(xué)習(xí)過程】

  一、知識回顧

  1、解一元二次方程都是有哪些方法?

  2、列一元一次方程解應(yīng)用題都是有哪些步驟?

  二、新知探究

  問題1:有一人患了流感,經(jīng)過兩輪傳染后共有121人患了流感,每輪傳染中平均一個人傳染了幾個人?

  分析:設(shè)每輪傳染中平均一個人傳染了x個人,那么患流感的這一個人在第一輪中傳染了_______人,第一輪后共有______人患了流感;

  第二輪傳染中,這些人中的每個人又傳染了_______人,第二輪后共有_______人患了流感。

  一.選一選

  1.王先生到銀行存了一筆三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.設(shè)王先生存入的本金為x元,則下面所列方程正確的是(  )

  A.x+3×4.25%x=33825 B.x+4.25%x=33825

  C.3×4.25%x=33825 D.3(x+4.25x)=33825

  【考點】由實際問題抽象出一元一次方程.

  【專題】增長率問題.

  【分析】根據(jù)“利息=本金×利率×?xí)r間”(利率和時間應(yīng)對應(yīng)),代入數(shù)值,計算即可得出結(jié)論.

  【解答】解:設(shè)王先生存入的本金為x元,根據(jù)題意得出:

  x+3×4.25%x=33825;

  故選:A.

  【點評】此題主要考查了一元一次方程的應(yīng)用,計算的關(guān)鍵是根據(jù)利息、利率、時間和本金的關(guān)系,進(jìn)行計算即可.

  2.若一元二次方程x2﹣4x﹣5=0的根是直角三角形斜邊上的中線長,則這個直角三角形的斜邊長為(  )

  A.2 B.10 C.2或10 D.5

  【考點】直角三角形斜邊上的中線;解一元二次方程-因式分解法.

  【分析】解一元二次方程求出中線,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答.

  【解答】解:因式分解得,(x+1)(x﹣5)=0,由此得,x+1=0,x﹣5=0,所以,x1=﹣1,x2=5,所以,直角三角形斜邊上的中線長為5,所以,這個直角三角形的斜邊長為2×5=10.

  故選B.

  【點評】本題考查了直角三角形斜邊上的中線等于斜邊的一半的.性質(zhì),因式分解法解一元二次方程,熟記性質(zhì)是解題的關(guān)鍵.

  3.三角形兩邊的長是3和4,第三邊的長是方程x2﹣12x+35=0的根,則該三角形的周長為(  )

  A.14 B.12 C.12或14 D.以上都不對

  【考點】解一元二次方程-因式分解法;三角形三邊關(guān)系.

  【分析】易得方程的兩根,那么根據(jù)三角形的三邊關(guān)系,排除不合題意的邊,進(jìn)而求得三角形周長即可.

  【解答】解:解方程x2﹣12x+35=0得:x=5或x=7.

  當(dāng)x=7時,3+4=7,不能組成三角形;

  當(dāng)x=5時,3+4>5,三邊能夠組成三角形.

  ∴該三角形的周長為3+4+5=12,故選B.

  【點評】本題主要考查三角形三邊關(guān)系,注意在求周長時一定要先判斷是否能構(gòu)成三角形.

  一.積累·整合

  1.某產(chǎn)品,原來每件的成本價是500元,若每件售價625元,則每件利潤率是.

  A.12% B.25% C.30% D.50%

  2.某次商品交易會上,所有參加會議的商家之間都簽訂了一份合同,共簽訂合同55份,則共有商家參加了交易會.

  3.銀行的某種儲蓄的年利率為4%,小民存1000元,存滿一年,本息= 。

  4.長方形的長比寬多8cm,面積為20m2,則它的周長為________.

  二.拓展·應(yīng)用

  5.某鋼鐵廠去年1月某種鋼的產(chǎn)量為5000噸,3月上升到7200噸,這兩個月平均每個月增長的百分率________.

  6.已知三角形的兩邊長分別是3和8,第三邊的數(shù)值是一元二次方程

  x2-17x+66=0的根則此三角形的周長為_______.

  7.某工廠一月份生產(chǎn)零件1000個,二月份生產(chǎn)零件1200個,那么二月份比一月份增產(chǎn)個增長率是___.

  8.在一塊長12m,寬8m的長方形平地中央,劃出地方砌一個面積為24m2的長方形花臺,要使花壇四周的寬地寬度一樣,則這個寬度為多少?

  三.探索·創(chuàng)新

  9.某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元,為了擴(kuò)大銷售,增加利潤,盡快減少庫存,商場決定采取適當(dāng)?shù)拇胧,?jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫降價1元,商場每天可多售出2件。

  (1)若商場平均每天要盈利1200元,每件襯衫應(yīng)降價多少元?

  (2)每件襯衫降價多少元時,商場每天盈利最多?

一元二次方程教案2

  【課前準(zhǔn)備】:

  箱子里有許多的紅球和藍(lán)球,現(xiàn)摸到1個紅球,3個綠球,共得11分,你知道摸到1個紅球得多少分?1個綠球得多少分?

  再摸一次,又摸到了3個紅球,2個綠球,共得12分。你知道摸到1個紅球、1個綠球各得多少分?

  【探索新知】

  問題一:問題中的量滿足怎樣的相等關(guān)系?

  問題中的量應(yīng)同時滿足以上兩個相等關(guān)系.如果設(shè)摸到1個紅球得x分,摸到1個綠球得y分.那么可以得到方程:

  ______________.

  _______________

  因而將這兩個方程組成二元一次方程組:

  ___________

  ____________

  問題二:根據(jù)上面的方程組,請你猜一猜,“摸到紅、綠球得分”問題的答案。你用了什么方法?

  方程(1)的解是

  ……

  方程(2)的解是

  ……

  可以看出___________是這兩個方程的公共解,我們把_______________________叫做二元一次方程組的解。

  因此,我們知道,摸到1個紅球得2分,1個綠球得3分.

  【知識運(yùn)用】

  例1:二元一次方程組的解是()

  A.B.C.D.

  例2:你能求出“雞兔同籠”問題中二元一次方程組的解嗎?

  練習(xí)應(yīng)用

 。1)如果是方程組的解,則m=,n=.

  【當(dāng)堂反饋】

  1.有3對數(shù):①②③在這3對數(shù)中,是方程的解;是方程的解;是二元一次方程組的.解.

  2.下列各對數(shù)值中,哪一組是二元一次方程組的解?

  3.如果是二元一次方程組的解.求m、n的值.

  4.已知關(guān)于x、y的二元一次方程組的解滿足,求a的值.

  5.甲種飲料每瓶2.5元,乙種飲料每瓶1.5元,某人買了x瓶甲種飲料,y瓶乙種飲料,共花了34元。

 。1)列出關(guān)于x、y的二元一次方程;

  (2)如果甲種飲料和乙種飲料共買16瓶,列出關(guān)于x、y的二元一次方程組,并找出它的解。

  6、寫出解是的二元一次方程組?你能寫出幾個?

  7、1)方程y=2x-3的解有個;

  2)方程3x+2y=1的解有個;

  3)方程組y=2x-3的解有個

  3x+2y=1

一元二次方程教案3

  教學(xué)設(shè)計思想

  解一元二次方程有四種方法,直接開平方法、配方法、公式法、因式分解法,這四種方法各有千秋。直接開平方法很簡單,在這里不做過多的介紹。為保證學(xué)生掌握基本的運(yùn)算技能,教學(xué)中進(jìn)行了一定量的訓(xùn)練,但要避免學(xué)生簡單的模仿。我們在探究一元二次方程解法的過程中,要加強(qiáng)思想方法的滲透,發(fā)展學(xué)生的思維能力。在解一元二次方程的幾種方法中,均需要用到轉(zhuǎn)化的思想方法。如配方法需要將方程轉(zhuǎn)化為能直接開平方的形式,公式法能根據(jù)一元二次方程轉(zhuǎn)化為兩個一元一次方程,所有這些均體現(xiàn)了轉(zhuǎn)化的思想。在教學(xué)時老師引導(dǎo)學(xué)生在主動進(jìn)行觀察、思考核探究的基礎(chǔ)上,體會數(shù)學(xué)思想方法在其中的作用,充分發(fā)展學(xué)生的'思維能力。

  教學(xué)目標(biāo)

  知識與技能:

  1.會用配方法、公式法、因式分解法解簡單數(shù)字系數(shù)的一元二次方程。

  2.能夠根據(jù)一元二次方程的特點,靈活選用解方程的方法,體會解決問題策略的多樣性。

  過程與方法:

  1.參與對一元二次方程解法的探索,體驗數(shù)學(xué)發(fā)現(xiàn)的過程,對結(jié)果比較、驗證、歸納、理清幾種解法之間的關(guān)系,并能根據(jù)方程的特點靈活選擇適當(dāng)?shù)姆椒ń庖辉畏匠獭?/p>

  2.在探究一元二次方程的過程中體會轉(zhuǎn)化、降次的數(shù)學(xué)思想。

  情感態(tài)度價值觀:

  在解一元二次方程的實踐中,交流、總結(jié)經(jīng)驗和規(guī)律,體驗數(shù)學(xué)活動樂趣。

  教學(xué)重難點

  重點:掌握配方法、公式法、因式分解法解一元二次方程的步驟,并熟練運(yùn)用上述方法解題。

  難點:根據(jù)方程的特點靈活選擇適當(dāng)?shù)姆椒ń庖辉畏匠獭?/p>

  教學(xué)方法

  探索發(fā)現(xiàn),講練結(jié)合

一元二次方程教案4

  課題:小結(jié)與思考課型:復(fù)習(xí)課第1課時總第12課時

  學(xué)習(xí)目標(biāo)::1.使學(xué)生熟練掌握二元一次方程組的解法.2.體會方程組的價值,感受數(shù)學(xué)文化.

  學(xué)習(xí)難點:掌握解二元一次方程組的基本思路.

  復(fù)習(xí)過程

  一.復(fù)習(xí)引入:

  學(xué)生回憶解二元一次方程組的基本思路.(1)代入消元(2)加減消元

  二.基礎(chǔ)練習(xí):

  1.下列各組x,y的值是不是二元一次方程組的解?

 。1)(2)(3)

  2.已知二元一次方程組的解,求a,b的值.

  3.根據(jù)下表中所給的x值以及x與y的關(guān)系式,求出相應(yīng)的y值,然后填入表內(nèi):

  x12345678910

  Y=4x

  Y=10-x

  根據(jù)上表找出二元一次方程組的解.

  4.解二元一次方程(1)(2)

  三.例題講解:

  例1.寫出一個二元一次方程,使得都是它的解,并且求出x=3時的方程的解.

  例2.對于等式y(tǒng)=kx+b,當(dāng)x=3時,y=5;當(dāng)x=-4時,y=-9,求當(dāng)x=-1時y的值.

  四.鞏固提高:

  1.已知,求x,y的值.

  2.甲、乙兩人都解方程組,甲看錯a得解,乙看錯b得解,求a、b的值.

  五.歸納總結(jié):解二元一次方程組的基本思路:

  1.代入消元法2.加減消元法

  六、達(dá)標(biāo)檢測

  1、若是二元一次方程,那么的a、b值分別是()

  A、1,0B、0,-1C、2,1D、2,-3

  2、下列幾對數(shù)值中哪一對是方程的解()

  A、B、C、D、

  3、若則的值是()

  A、-1B、1C、2D、-2

  4、已知,可以得到用表示的式子是()

  A、B、C、D、

  二.填空題:

  5、在中,當(dāng)時,當(dāng)時,則,.

  6、在中,如果,那么.

  7、已知是方程組的解,則=.

  8、寫出一個以為解的'二元一次方程組.

  9、關(guān)于x、y的方程組與有相同的解,則=.

  四.解答題:

  10、11、、

  七年級(下)數(shù)學(xué)第十章二元一次方程組導(dǎo)學(xué)案編者:邳州市鄒莊中學(xué)孟慶金

  課題:小結(jié)與思考課型:復(fù)習(xí)課第2課時總第13課時

  學(xué)習(xí)目標(biāo)

  1.體會方程組是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型.2.學(xué)會解決實際問題,分析問題能力有所提高.

  學(xué)習(xí)難點:找出實際應(yīng)用問題中的等量關(guān)系.

  教學(xué)過程

  二.復(fù)習(xí)引入:

  利用方程組解決實際問題的方法和步驟:

  1.理解題意,明確數(shù)量關(guān)系2.找相等關(guān)系

  3.設(shè)未知數(shù)4.列出二元一次方程組

  5.解這個二元一次方程組6.檢驗并作答

  二.基礎(chǔ)練習(xí):

  1.有甲、乙兩種銅銀合金,甲種含銀25%,乙種含銀37.5%,現(xiàn)在要熔成含銀30%的合金100千克,這兩種合金各取多少千克?

  2.甲、乙兩地之間路程為20km,A,B兩人同時相對而行,2小時后相遇,相遇后A就返回甲地,B仍向甲地前進(jìn),A回到甲地時,B離甲地還有2km,求A,B兩人速度.

  三.例題講解:

  例1.小亮在勻速行駛的汽車?yán)铮⒁獾焦防锍瘫系臄?shù)是兩位數(shù);1h后看到里程碑上的數(shù)與第一次看到的兩位數(shù)恰好顛倒了數(shù)字順序;再過1h后,第三次看到的里程碑上的數(shù)字又恰好是第一次見到的數(shù)字的兩位數(shù)的數(shù)字之間添加一個0的三位數(shù),這3塊里程碑上的數(shù)各是多少?

  例2.七年級(2)班的一個綜合實踐活動小組去A、B兩個超市調(diào)查去年和今年“五一”期間的銷售情況,下圖是調(diào)查后小敏與其他兩位同學(xué)進(jìn)行交流的情景,根據(jù)他們的對話,請你分別求出A、B兩個超市今年“五一”期間的銷售額.

  四.鞏固提高:

  1.某船在靜水中的速度為4千米/時,該船于下午1點從A地出發(fā),逆流而上,下午2點20分到達(dá)B地,停泊1小時后返回,下午4點回到A地.求A、B兩地的距離及水流的速度.

  2.某樂園的價格規(guī)定如下表所列,某校七年級(1)、(2)兩個共104人去游樂園,其中

  (1)班人數(shù)較少,不足50人,(2)班人數(shù)較多,超過50人,經(jīng)估算,如果兩班都以班為

  單位分別購票,則一共應(yīng)付1240元;問兩班各有多少名學(xué)生?如果兩班聯(lián)合起來,作為一個團(tuán)體購票,則可以節(jié)省多少錢?

  購票人數(shù)1-50人51-100人100人以上

  每人門票價13元11元9元

  五.歸納總結(jié):

  利用方程組解決實際問題的基本步驟

  【課后作業(yè)】

  班級姓名學(xué)號

  1、如圖AB⊥BC,∠ABD的度數(shù)比∠DBC的度數(shù)的兩倍少15°,設(shè)∠ABD

  和∠DBC的度數(shù)分別為x、y,那么下面可以求出這兩個角的度數(shù)

  的方程是:()

  A、B、C、D、

  2、有一個兩位數(shù),它的十位數(shù)字與個位數(shù)字之和為5,則符合條件的兩位數(shù)有()

  A、4個B、5個C、6個D、7個

  3、根據(jù)圖給出的信息,求每件恤衫和每瓶礦泉水的價格.

  4、《一千零一夜》中有這樣一段文字:有一群鴿子其中一部分在樹上歡歌,另一部分在一地上覓食,樹上的鴿子對地上覓食的鴿子說:“若你們中飛上來一只,則樹下的鴿子是整個鴿群的三分之一,若樹上的鴿子飛下去一只,則樹上、樹下的鴿子就一樣多了”你知道樹上、樹下各有多少只鴿子嗎?

  5、某市電信局現(xiàn)有600部已申請裝機(jī)的固定電話沿待裝機(jī),此外每天還有新申請裝機(jī)的電話也待裝機(jī),設(shè)每天新申請裝機(jī)的固定電話部數(shù)相同,每個電話裝機(jī)小組每天安裝的固定電話部數(shù)也相同,若安排3個裝機(jī)小組,恰好60天可將待裝固定電話裝機(jī)完畢;若安排5個裝機(jī)小組,恰好20天可將待裝固定電話裝機(jī)完畢.求每天新申請裝機(jī)的固定電話部數(shù)和每個電話裝機(jī)小組每天安裝的固定電話部數(shù).

一元二次方程教案5

  一、教材分析

  1、教材所處的地位和作用:本課是閱讀教材P39頁的有關(guān)內(nèi)容,雖然新課程標(biāo)準(zhǔn)沒有要,教材上也作為閱讀教材,但由于其內(nèi)容太重要了,因而必須把它作為一堂課來上。它的作用在于讓學(xué)生能盡快判定一元二次方程根的情況。

  2、教學(xué)內(nèi)容:本課主要是引導(dǎo)學(xué)生通過對一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+ )2 = 2 的觀察,分析,討論,發(fā)現(xiàn),最后得出結(jié)論:只有當(dāng) 2

  b2-4ac≥ 0 時,才能直接開平方,進(jìn)一步討論分析得出根的判別式,從而運(yùn)用它解決實際問題。

  3、新課程標(biāo)準(zhǔn)的要求:由于根的判別式作為刪去內(nèi)容,雖然其內(nèi)容重要,因而在處理這部分內(nèi)容時,只能要求作了解性深入,練習(xí)盡可能簡捷明確。

  4、教學(xué)目標(biāo):

 。1)知識能力目標(biāo):通過本課的學(xué)習(xí),讓學(xué)生在知識上了解掌握根的判別式。在能力上在求不解方程能判定一元二次方程根的情況;根據(jù)根的情況,探求所需的條件。

 。2)情感目標(biāo):學(xué)生通過觀察、分析、討論、相互交流、培養(yǎng)與他人交流的能力,通過觀察、分析、感受數(shù)學(xué)的變化美,激發(fā)學(xué)生的探求欲望。

  5、數(shù)學(xué)思想:由感性認(rèn)識到理性認(rèn)識。

  6、教學(xué)重點:

  (1)發(fā)現(xiàn)根的判別式。

 。2)用根的判別式解決實際問題。

  7、教學(xué)難點:

  根的判別式的發(fā)現(xiàn)

  8、教法:啟導(dǎo)、探究

  9、學(xué)法:合作學(xué)習(xí)與探究學(xué)習(xí)

  10、教學(xué)模式:引導(dǎo)——發(fā)現(xiàn)式

  二、教學(xué)過程

 。ㄒ唬┳粤(xí)回顧,引入新課

  1、師生共同回顧:一元二次方程的解法

  2、解下列一元二次方程。

 。1)x2 -1=0 (2)x2 -2x =-1

 。3)(x+1)2- 4=0 (4)x2 +2x+2=0

  3、為什么會出現(xiàn)無解?

 。ǘ┨剿

  1、回顧:用配方法解一元二次方程ax2+bx+c=0(a≠0)的`過程。

  2、觀察(x+ ) 2= 2 在什么情況下成立?

  3、學(xué)生分組討論。

  4、猜測?

  5、發(fā)現(xiàn)了什么?

  6、總結(jié):2(先由學(xué)生完成,后由教師補(bǔ)充完整),通過觀察分析發(fā)現(xiàn),只有當(dāng) b2-4ac≥ 0時, 才能直接開平方,也就是說,一元二次方程ax2+bx+c=0(a≠0)只有當(dāng)系數(shù)a,b,c都是b2-4ac≥ 0時,才有實數(shù)根。(注意有根和有實數(shù)根的區(qū)別)

  7、進(jìn)一步觀察發(fā)現(xiàn)一元二次方程ax2+bx+c=0(a≠0)

  (1)當(dāng)b2-4ac> 0時,_______________________

  (2)當(dāng)b2-4ac= 0時,_________________________

 。3)當(dāng)b2-4ac< 0時,_________________________

  8、總結(jié):

 。1)比較分析學(xué)生的討論分析結(jié)果。

 。2)由學(xué)生總結(jié)。

  (3)教師根據(jù)學(xué)生總結(jié)情況補(bǔ)充完整。

  把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判別式。

  (1)當(dāng)b2-4ac> 0時,_______________________

 。2)當(dāng)b2-4ac= 0時,_________________________

 。3)當(dāng)b2-4ac< 0時,________________________

 。ㄈ⿷(yīng)用新知:

  1、不解方程判定下列一元二次方程根的情況。

 。1)x2-x-6=0 b2-4ac=______ x1=_____ x2=_____

 。2)x2-2x=1 b2-4ac=______ x1=_____ x2=_____

  (3)x2-2x+2=0 b2-4ac=______ x1=_____ x2=_____

  2、根據(jù)根的情況,求字母系數(shù)的取值范圍。

  例1:當(dāng)m取什么值時,關(guān)于x的一元二次方程,2x2-(m+2)+2m=0有兩個相等的實數(shù)根?并求出方程的根。

 。1)讀題分析:

  A、二次項系數(shù)是什么? a=_______

  B、一次項系數(shù)是什么? b=_______

  C、常數(shù)項是什么? c=_______

  (2)建立等式,根據(jù)有個常數(shù)根 b2-4ac=0

 。3)由學(xué)生完成解題過程后教師評價

  3、證明

  例2:說明不論m取什么值時,關(guān)于x的一元二次方程(x-1)(x-2)=m2,不論m取代的值都有幾個不相等的實根。

 。ㄋ模┚毩(xí)

  已知關(guān)于x的一元二次方程2x2-(2m+1)x+m=0的根的判別式是9,求m的值及方程的根。

 。ㄎ澹┬〗Y(jié):把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判別式,并會用它們解決一些實際問題。

  三、作業(yè)

  1、把例1、例2整理在作業(yè)本上。

  2、有余力的同學(xué)把練習(xí)題整理在作業(yè)本。

  四、教學(xué)后記

一元二次方程教案6

  一、教學(xué)目標(biāo)

  【知識與技能】

  掌握應(yīng)用因式分解的方法,會正確求一元二次方程的解。

  【過程與方法】

  通過利用因式分解法將一元二次方程轉(zhuǎn)化成兩個一元一次方程的過程,體會“等價轉(zhuǎn)化”“降次”的數(shù)學(xué)思想方法。

  【情感態(tài)度價值觀】

  通過探討一元二次方程的解法,體會“降次”化歸的思想,逐步養(yǎng)成主動探究的精神與積極參與的意識。

  二、教學(xué)重難點

  【教學(xué)重點】

  運(yùn)用因式分解法求解一元二次方程。

  【教學(xué)難點】

  發(fā)現(xiàn)與理解分解因式的方法。

  三、教學(xué)過程

  (一)導(dǎo)入新課

  復(fù)習(xí)回顧:和學(xué)生一起回憶平方差、完全平方公式,以及因式分解的常用方法。

  (二)探究新知

  問題1:一個數(shù)的平方與這個數(shù)的3倍有可能相等嗎?如果相等,這個數(shù)是幾?你是怎樣求出來的?

  學(xué)生小組討論,探究后,展示三種做法。

  問題:小穎用的什么法?——公式法

  小明的解法對嗎?為什么?——違背了等式的性質(zhì),x可能是零。

  小亮的解法對嗎?其依據(jù)是什么——兩個數(shù)相乘,如果積等于零,那么這兩個數(shù)中至少有一個為零。

  問題2:學(xué)生探討哪種方法對,哪種方法錯;錯的'原因在哪?你會用哪種方法簡便]

  師引導(dǎo)學(xué)生得出結(jié)論:

  如果a·b=0,那么a=0或b=0

  (如果兩個因式的積為零,則至少有一個因式為零,反之,如果兩個因式有一個等于零,它們的積也就等于零。)

  “或”有下列三層含義

  ①a=0且b≠0②a≠0且b=0③a=0且b=0

  問題3:

  (1)什么樣的一元二次方程可以用因式分解法來解?

  (2)用因式分解法解一元二次方程,其關(guān)鍵是什么?

  (3)用因式分解法解一元二次方程的理論依據(jù)是什么?

  (4)用因式分解法解一元二方程,必須要先化成一般形式嗎?

  因式分解法:當(dāng)一元二次方程的一邊是0,而另一邊易于分解成兩個一次因式的乘積時,我們就可以用分解因式的方法求解。這種用分解因式解一元二次方程的方法稱為因式分解法。

  老師提示:1.用分解因式法的條件是:方程左邊易于分解,而右邊等于零;2.關(guān)鍵是熟練掌握因式分解的知識;3.理論依舊是“如果兩個因式的積等于零,那么至少有一個因式等于零!

  (三)鞏固提高

  1.用分解因式法解下列方程嗎?

  總結(jié):右化零,左分解,兩因式,各求解。

  (四)小結(jié)作業(yè)

  用因式分解法求解一元二次方程的步驟:

  1.方程化為一般形式;

  2.方程左邊因式分解;

  3.至少一個一次因式等于零得到兩個一元一次方程;

  4.兩個一元一次方程的解就是原方程的解。

一元二次方程教案7

  一、【學(xué)習(xí)目標(biāo)】:

  1.借助“表格”分析復(fù)雜問題中的數(shù)量關(guān)系,從而建立方程解決實際問題.

  2.提高學(xué)生分析能力,解決問題能力,使學(xué)生感受方程的作用.

  學(xué)習(xí)重點:理解題意,找出數(shù)量關(guān)系.

  學(xué)習(xí)難點:找出等量關(guān)系.

  二、【知識準(zhǔn)備】:

  某廠生產(chǎn)甲、乙兩種型號的產(chǎn)品,生產(chǎn)一個甲種產(chǎn)品需要時間8s、銅8g;生產(chǎn)一個乙種產(chǎn)品需要時間6s、銅16g.如果生產(chǎn)甲、乙兩種產(chǎn)品共用1h,用銅6.4kg,甲、乙兩種產(chǎn)品各生產(chǎn)多少個?

  甲種產(chǎn)品x個乙種產(chǎn)品y個總計

  用時/s

  用銅/g

  1、探究嘗試:

  (1)、已知數(shù)是什么?;未知數(shù)是么?;

  (2)、能找到幾個等量關(guān)系?

  (3)、單位是否一致?。

  2.概括總結(jié):探索解決問題的方法:

  你能告訴我等量關(guān)系或方程嗎?

  3.分析:問題:從表格中能找到等關(guān)系嗎?

  解:設(shè)生產(chǎn)甲種產(chǎn)品x個,乙種產(chǎn)品y個

  由題意得:

  解這個方程得

  答:生產(chǎn)甲種產(chǎn)品個,乙種產(chǎn)品280個.

  三、【新課學(xué)習(xí)】:

  例1、為了加強(qiáng)公民的節(jié)水意識,合理利用水資源.某市采用價格調(diào)控手段達(dá)到節(jié)約水的目的規(guī)定:每戶居民每月用水不超過6時,按基本價格收費(fèi);超過部分要加價收費(fèi)。該市某戶居民今年4、5月份的用水量和水費(fèi)如下表所示,試求用水收費(fèi)的兩種價格.

  月份用水量/

  水費(fèi)/元

  4821

  5927

  分析:由表格看到什么信息?

  4月份用水超過6,所以水費(fèi)有兩部分組成21元.

  5月份用水超過6,所以水費(fèi)有兩部分組成27元.

  解:設(shè)基本價格為x元/;超過6部分的按y元/.

  由題意知:

  解這個方程得:

  答:基本價格為1.5元/;超過6部分的按元/。

  四、【歸納總結(jié)】:

  1、解決實際問題,關(guān)鍵是:,找出:,建立.

  2、這節(jié)課我的收獲是:;

  還有疑問。

  五、【達(dá)標(biāo)檢測】:

  1.小麗買蘋果和桔子,買4千克蘋果和2千克桔子,花費(fèi)18元;如果買2千克蘋果和4千克桔子花費(fèi)16.8元,求蘋果每千克多少元,桔子每千克多少元?

  2.甲、乙兩糧倉,甲運(yùn)進(jìn)14t糧食,乙運(yùn)出10t糧食后,兩個糧倉數(shù)量相等;甲運(yùn)出8t,乙運(yùn)進(jìn)18t后,乙是甲的.6倍.問甲、乙糧倉原來各有多少?

  3.21枚1角與5角的硬幣,共是5元3角,其中1角與5角的硬幣各是多少?

  4.班級買票看電影,票分為甲乙兩種,甲種票買了5張,乙種票買了35張,花費(fèi)125元.現(xiàn)在班里每個人都去看電影,問甲乙票價各是多少?

  5.購買書有以下活動,買1-19本的,每本可以9折;超過20本(包括20本),每本7折,每本5元.現(xiàn)有人買兩次書,共30本,共花費(fèi)129元,求兩次個買多少本?

  6.班級買票看電影,票分為甲乙兩種,甲種票買了5張,乙種票買了35張,花費(fèi)125元.現(xiàn)在班里有人不去看電影,于是乙種票退了5張,這時實際花了110元,問甲乙票價各是多少?

  七年級(下)數(shù)學(xué)第十章二元一次方程組導(dǎo)學(xué)案編者:邳州市鄒莊中學(xué)孟慶金

一元二次方程教案8

  教學(xué)目的 知識技能 使學(xué)生會用列一元二次方程的方法解決有關(guān)面積、體積方面和經(jīng)濟(jì)方面的問題.

  數(shù)學(xué)思考 提高將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力以及用數(shù)學(xué)的意識,滲透轉(zhuǎn)化的思想、方程的思想及數(shù)形結(jié)合的思想.

  解決問題 通過列一元二次方程的方法解決日常生活及生產(chǎn)實際中遇到的有關(guān)面積、體積方面和經(jīng)濟(jì)方面的問題.

  情感態(tài)度 通過探究性學(xué)習(xí),抓住問題的關(guān)鍵,揭示它的規(guī)律性,展示解題的簡潔性的數(shù)學(xué)美.

  教學(xué)難點 審題,從文字語言中挖掘有價值的信息.

  知識重點 會用列一元二次方程的方法解有關(guān)面積、體積方面和經(jīng)濟(jì)方面的問題.

  教學(xué)過程 設(shè)計意圖

  教學(xué)過程

  問題一:列方程解應(yīng)用題的一般步驟?

  師生共同回憶

  列方程解應(yīng)用題的步驟:

  (1)審題;(2)設(shè)未知數(shù);

 。3)列方程;(4)求解;

 。5)檢驗; (6)答.

  問題二:矩形的周長和面積?長方體的體積?

  問題三:如圖,某小區(qū)內(nèi)有一塊長、寬比為1:2的矩形空地,計劃在該空地上修筑兩條寬均為2m的互相垂直的小路,余下的四塊小矩形空地鋪成草坪,如果四塊草坪的面積之和為312m2,請求出原來大矩形空地的長和寬.

  教師活動:引導(dǎo)學(xué)生讀題,找到題目中的關(guān)鍵語句.

  學(xué)生活動:在關(guān)鍵語句中找到反映相等關(guān)系的語句,探究解決辦法.

  教師活動:用多媒體演示分析,解題方法.

  做一做

  如圖,有一塊長80cm,寬60cm的硬紙片,在四個角各剪去一個同樣的小正方形,用剩余部分做成一個底面積為1500cm2的無蓋的長方體盒子.求剪去的小正方形的邊長.

  課堂練習(xí):將一個長方形的長縮短5cm,寬增長3cm,正好得到一個正方形.已知原長方形的面積是正方形面積的 ,求這個正方形的邊長.

  問題四:某商場銷售一種服裝,平均每天可售出20件,每件贏利40元.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件服裝降價1元,平均每天能多售出2件.在國慶節(jié)期間,商場決定采取降價促銷的措施,以達(dá)到減少庫存、擴(kuò)大銷售量的目的如果銷售這種服裝每天贏利1200元,那么每件服裝應(yīng)降價多少元?

  學(xué)生活動:在眾多的文字中,找到關(guān)鍵語句,分析相等關(guān)系.

  教師活動:用多媒體幫助學(xué)生分析試題.提示學(xué)生檢驗解的合理性.

  課堂練習(xí):1.經(jīng)銷商以每雙21元的價格從廠家購進(jìn)一批運(yùn)動鞋,如果每雙鞋售價為a元,那么可以賣出這種運(yùn)動鞋(350-10a)雙.物價局限定每雙鞋的售價不得超過進(jìn)價的120%.如果商店要賺400元,每雙鞋的售價應(yīng)定為多少元?需要賣出多少雙鞋?

  2.某商店從廠家以每件18元的價格購進(jìn)一批商品,該商店可以自行定價.據(jù)市場調(diào)查,該商品的售價與銷售量的.關(guān)系是:若每件售價a元,則可賣出(320-10a)件,但物價部門限定每件商品加價不能超過進(jìn)貨價25 %的.如果商店計劃要獲利400元,則每件商品的售價應(yīng)定為多少元?需要賣出這種商品多少件?(每件商品的利潤=售價進(jìn)貨價)

  復(fù)習(xí)列方程解應(yīng)用題的一般步驟.

  本題為后面解決有關(guān)面積、體積方面問題做鋪墊.

  提高學(xué)生的審題能力.使學(xué)生會解決有關(guān)面積的問題.

  解決體積問題的問題

  培養(yǎng)學(xué)生用數(shù)學(xué)的意識以及滲透轉(zhuǎn)化和方程的思想方法.

  強(qiáng)調(diào)對方程的解進(jìn)行雙重檢驗.

  小結(jié)與作業(yè)

  課堂

  小結(jié) 利用一元二次方程解決實際問題時,要注意通過實際要求檢驗根的合理性,要注意審題能力的培養(yǎng).

  本課

  作業(yè) 課本第43頁 習(xí)題2

  課后隨筆(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)

一元二次方程教案9

  一、教材分析:

  1、教材所處的地位:此前學(xué)生已經(jīng)學(xué)習(xí)了應(yīng)用一元一次方程與二元一次方程組來解決實際問題。本節(jié)仍是進(jìn)一步討論如何建立和利用一元二次方程模型來解決實際問題,只是在問題中數(shù)量關(guān)系的復(fù)雜程度上又有了新的發(fā)展。

  2、教學(xué)目標(biāo)要求:

  (1)能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元二次方程,體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學(xué)模型;

 。2)能根據(jù)具體問題的實際意義,檢驗結(jié)果是否合理;

 。3)經(jīng)歷將實際問題抽象為代數(shù)問題的過程,探索問題中的數(shù)量關(guān)系,并能運(yùn)用一元二次方程對之進(jìn)行描述;

 。4)通過用一元二次方程解決身邊的問題,體會數(shù)學(xué)知識應(yīng)用的價值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,了解數(shù)學(xué)對促進(jìn)社會進(jìn)步和發(fā)展人類理性精神的作用。

  3、教學(xué)重點和難點:

  重點:列一元二次方程解與面積有關(guān)問題的應(yīng)用題。

  難點:發(fā)現(xiàn)問題中的等量關(guān)系。

  二.教法、學(xué)法分析:

  1、本節(jié)課的設(shè)計中除了探究3教師參與多一些外,其余時間都堅持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動性。教學(xué)過程中,教師只注重點、引、激、評,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗知識的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維。同時,注意加強(qiáng)對學(xué)生的啟發(fā)和引導(dǎo),鼓勵培養(yǎng)學(xué)生們大膽猜想,小心求證的科學(xué)研究的思想。

  2、本節(jié)內(nèi)容學(xué)習(xí)的關(guān)鍵所在,是如何尋求、抓準(zhǔn)問題中的數(shù)量關(guān)系,從而準(zhǔn)確列出方程來解答。因此課堂上從審題,找到等量關(guān)系,列方程等一系列活動都由生生交流,兵教兵從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

  三.教學(xué)流程分析:

  本節(jié)課是新授課,根據(jù)學(xué)生的知識結(jié)構(gòu),整個課堂教學(xué)流程大致可分為:

  活動1復(fù)習(xí)回顧解決課前參與

  活動2封面設(shè)計問題的探究

  活動3草坪規(guī)劃問題的延伸

  活動4課堂回眸

  這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的.思想。

  活動1復(fù)習(xí)回顧解決課前參與

  由學(xué)生展示課前參與題目,集體訂正。目的在于回顧常用幾何圖形的面積公式,并且引出本節(jié)學(xué)習(xí)內(nèi)容——面積問題。

  活動2封面設(shè)計問題的探究

  通過學(xué)生自己獨立審題,找尋等量關(guān)系,教師引導(dǎo)學(xué)生對“正中央矩形與封面長寬比例相同”題意的理解,使學(xué)生明白中央矩形長寬比為9:7,從而進(jìn)一步突破難點:上下邊襯與左右邊襯比也為9:7,為學(xué)生設(shè)未知數(shù)提供幫助。之后由學(xué)生分組完成方程的列法,以及取法。講解中注重簡便設(shè)法及解法的指導(dǎo)與評價。

  活動3草坪規(guī)劃問題的延伸

  放手給學(xué)生處理,以學(xué)生合作完成為主。突出利用平移變換為主的解決方式。多由學(xué)生分析不同的處理方法。

  活動4課堂回眸

  本課小結(jié)從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學(xué)生學(xué)知識,用知識是有很大的促進(jìn)的。方法以學(xué)生暢談收獲為主。

一元二次方程教案10

  主備:審核:初一數(shù)學(xué)備課組

  班級姓名。

  學(xué)習(xí)目標(biāo):

  1會用代入消元法解二元一次方程組。

  2通過解決問題,了解解二元一次方程組的必要性。

  3體會轉(zhuǎn)化的思想。

  一.課前準(zhǔn)備

  1把方程寫成用x表示y的形式,結(jié)果是y=。

  2把代入方程,消去y,得關(guān)于x的方程。(不必化簡)。

  3用代入法解方程組:

  二.探索新知

  問題探索:籃球聯(lián)賽中,每場比賽都要分出勝負(fù),每隊勝一場得2分.負(fù)一場得1分,某隊賽了12場贏了x場,輸了y場,得到20分,我們可以列出方程組:

  ,如何解這個二元一次方程組?

  三.知識應(yīng)用

  例1解方程組。你還有不同解法過程嗎?寫寫看。

  試一試:解方程組

  代入消元法:

  。

  代入法的基本思想是。

  代入消元法的步驟是:

  例2把下列各方程變形為用一個未和數(shù)的代數(shù)式表示另一個未知數(shù)的`形式.

 。1)4x-y=-1;(2)5x-10y+15=0.

  四.當(dāng)堂反饋

  1用代入法解下列方程組:

  2長方形的長是寬的3倍,如果長減少3cm,寬增加4cm,這個長方形就變成了一個正方形.求這個長方形的長和寬.

  3一個兩位數(shù)加上45恰好等于把這個兩位數(shù)的個位數(shù)字與十位數(shù)字對調(diào)后組成的新兩位數(shù),這個兩位數(shù)的十位數(shù)字和個位數(shù)字的和是7,你能知道這個兩位數(shù)嗎?

  五.課后鞏固

 。ㄒ唬┨羁疹}

  1.已知:=0是二元一次方程,則的值為

  2.解方程組:由①用表示,得=③,將③代入②,得,解得=,方程組的解為。

  3.若,則

  4.若和是同類項,則。

  (二)解下列方程組:

  注意:對于一般形式的二元一次方程用代入法求解,關(guān)鍵是選擇哪一個方程變形,消什么元,選取的恰當(dāng)往往會使計算簡單且不易出錯,選取的原則是:

  1.選擇未知數(shù)的系數(shù)是1或-l的方程;

  2.若未知數(shù)的系數(shù)都不是1或-1,選系數(shù)的絕對值較小的方程,將要消的元用含另一個未知數(shù)的代數(shù)式表示,再把它代入沒有變形的方程中去。這樣就把二元一次方程組轉(zhuǎn)化為一元一次方程了。

  3.對運(yùn)算的結(jié)果養(yǎng)成檢驗的習(xí)慣。

  六、拓展提升

  1.已知方程組的解互為相反數(shù),求的值。

  2已知方程組與有相同的解,求的值。

  3.若方程組的解也是方程的解,求的值。

  4.已知方程組的解的和是-12,求的值。

一元二次方程教案11

  一、教學(xué)目標(biāo)

  1.使學(xué)生會用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間關(guān)系的應(yīng)用題。

  2.通過列方程解應(yīng)用問題,進(jìn)一步體會提高分析問題、解決問題的能力。

  3.通過列方程解應(yīng)用問題,進(jìn)一步體會代數(shù)中方程的思想方法解應(yīng)用問題的優(yōu)越性。

  二、重點·難點·疑點及解決辦法

  1.教學(xué)重點:會用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間的關(guān)系的應(yīng)用題。

  2.教學(xué)難點:根據(jù)數(shù)與數(shù)字關(guān)系找等量關(guān)系。

  3.教學(xué)疑點:學(xué)生對列一元二次方程解應(yīng)用問題中檢驗步驟的理解。

  4.解決辦法:列方程解應(yīng)用題,就是先把實際問題抽象為數(shù)學(xué)問題,然后由數(shù)學(xué)問題的解決而獲得對實際問題的解決。列方程解應(yīng)用題,最重要的是審題,審題是列方程的'基礎(chǔ),而列方程是解題的關(guān)鍵,只有在透徹理解題意的基礎(chǔ)上,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確找出已知量與未知量之間的等量關(guān)系,正確地列出方程。

  三、教學(xué)過程

  1.復(fù)習(xí)提問

  (1)列方程解應(yīng)用問題的步驟?

 、賹忣},②設(shè)未知數(shù),③列方程,④解方程,⑤答。

 。2)兩個連續(xù)奇數(shù)的表示方法是,(n表示整數(shù))

  2.例題講解

  例1 兩個連續(xù)奇數(shù)的積是323,求這兩個數(shù)。

  分析:(1)兩個連續(xù)奇數(shù)中較大的奇數(shù)與較小奇數(shù)之差為2,(2)設(shè)元(幾種設(shè)法)a.設(shè)較小的奇數(shù)為x,則另一奇數(shù)為,b.設(shè)較小的奇數(shù)為,則另一奇數(shù)為;c.設(shè)較小的奇數(shù)為,則另一個奇數(shù)。

  以上分析是在教師的引導(dǎo)下,學(xué)生回答,有三種設(shè)法,就有三種列法,找三位學(xué)生使用三種方法,然后進(jìn)行比較、鑒別,選出最簡單解法。

  解法(一) 設(shè)較小奇數(shù)為x,另一個為,

  據(jù)題意,得

  整理后,得

  解這個方程,得。

  由得,由得,

  答:這兩個奇數(shù)是17,19或者-19,-17。

  解法(二) 設(shè)較小的奇數(shù)為,則較大的奇數(shù)為。

  據(jù)題意,得

  整理后,得

  解這個方程,得。

  當(dāng)時,

  當(dāng)時,。

  答:兩個奇數(shù)分別為17,19;或者-19,-17。 第 1 2 頁

一元二次方程教案12

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R教學(xué)點:

  1.使學(xué)生了解一元二次方程及整式方程的意義;

  2.掌握一元二次方程的一般形式,正確識別二次項系數(shù)、一次項系數(shù)及常數(shù)項.

 。ǘ┠芰τ(xùn)練點:

  1.通過一元二次方程的引入,培養(yǎng)學(xué)生分析問題和解決問題的能力;

  2.通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對概念理解的完整性和深刻性.

 。ㄈ┑掠凉B透點:由知識來源于實際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)列方程向?qū)W生滲透方程的思想方法,由此培養(yǎng)學(xué)生用數(shù)學(xué)的意識.

  二、教學(xué)重點、難點

  1.教學(xué)重點:一元二次方程的意義及一般形式.

  2.教學(xué)難點:正確識別一般式中的“項”及“系數(shù)”.

  三、教學(xué)步驟

  (一)明確目標(biāo)

  1.用電腦演示下面的操作:一塊長方形的薄鋼片,在薄鋼片的四個角上截去四個相同的`小正方形,然后把四邊折起來,就成為一個無蓋的長方體盒子,演示完畢,讓學(xué)生拿出事先準(zhǔn)備好的長方形紙片和剪刀,實際操作一下剛才演示的過程.學(xué)生的實際操作,為解決下面的問題奠定基礎(chǔ),同時培養(yǎng)學(xué)生手、腦、眼并用的能力.

  2.現(xiàn)有一塊長80cm,寬60cm的薄鋼片,在每個角上截去四個相同的小正方形,然后做成底面積為1500cm2的無蓋的長方體盒子,那么應(yīng)該怎樣求出截去的小正方形的邊長?

  教師啟發(fā)學(xué)生設(shè)未知數(shù)、列方程,經(jīng)整理得到方程x2-70x+825=0,此方程不會解,說明所學(xué)知識不夠用,需要學(xué)習(xí)新的知識,學(xué)了本章的知識,就可以解這個方程,從而解決上述問題.

  板書:“第十二章一元二次方程”.教師恰當(dāng)?shù)恼Z言,激發(fā)學(xué)生的求知欲和學(xué)習(xí)興趣.

 。ǘ┱w感知

  通過章前引例和節(jié)前引例,使學(xué)生真正認(rèn)識到知識來源于實際,并且又為實際服務(wù),學(xué)習(xí)了一元二次方程的知識,可以解決許多實際問題,真正體會學(xué)習(xí)數(shù)學(xué)的意義;產(chǎn)生用數(shù)學(xué)的意識,調(diào)動學(xué)生積極主動參與數(shù)學(xué)活動中.同時讓學(xué)生感到一元二次方程的解法在本章中處于非常重要的地位.

 。ㄈ┲攸c、難點的學(xué)習(xí)及目標(biāo)完成過程

  1.復(fù)習(xí)提問

  (1)什么叫做方程?曾學(xué)過哪些方程?

 。2)什么叫做一元一次方程?

一元二次方程教案13

  第1教時

  教學(xué)內(nèi)容: 12.1 用公式解一元二次方程(一)

  教學(xué)目標(biāo):

  知識與技能目標(biāo):1.使學(xué)生了解一元二次方程及整式方程的意義;2.掌握一元二次方程的一般形式,正確識別二次項系數(shù)、一次項系數(shù)及常數(shù)項.

  過程與方法目標(biāo): 1.通過一元二次方程的引入,培養(yǎng)學(xué)生分析問題和解決問題的能力;2.通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對概念理解的完整性和深刻性.

  情感與態(tài)度目標(biāo):由知識來源于實際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)列方程向?qū)W生滲透方程的思想方法,由此培養(yǎng)學(xué)生用數(shù)學(xué)的意識.。

  教學(xué)重、難點與關(guān)鍵:

  重點:一元二次方程的意義及一般形式.

  難點:正確識別一般式中的“項”及“系數(shù)”。

  教輔工具:

  教學(xué)程序設(shè)計:

  程序

  1.用電腦演示下面的操作:一塊長方形的薄鋼片,在薄鋼片的四個角上截去四個相同的小正方形,然后把四邊折起來,就成為一個無蓋的長方體盒子,演示完畢,讓學(xué)生拿出事先準(zhǔn)備好的長方形紙片和剪刀,實際操作一下剛才演示的過程.學(xué)生的實際操作,為解決下面的問題奠定基礎(chǔ),同時培養(yǎng)學(xué)生手、腦、眼并用的能力.

  2.現(xiàn)有一塊長80cm,寬60cm的薄鋼片,在每個角上截去四個相同的小正方形,然后做成底面積為1500cm2的無蓋的長方體盒子,那么應(yīng)該怎樣求出截去的小正方形的邊長?

  教師啟發(fā)學(xué)生設(shè)未知數(shù)、列方程,經(jīng)整理得到方程x2-70x+825=0,此方程不會解,說明所學(xué)知識不夠用,需要學(xué)習(xí)新的知識,學(xué)了本章的知識,就可以解這個方程,從而解決上述問題.

  板書:“第十二章一元二次方程”.教師恰當(dāng)?shù)恼Z言,激發(fā)學(xué)生的求知欲和學(xué)習(xí)興趣.

  學(xué)生看投影并思考問題

  通過章前引例和節(jié)前引例,使學(xué)生真正認(rèn)識到知識來源于實際,并且又為實際服務(wù),學(xué)習(xí)了一元二次方程的知識,可以解決許多實際問題,真正體會學(xué)習(xí)數(shù)學(xué)的意義;產(chǎn)生用數(shù)學(xué)的意識,調(diào)動學(xué)生積極主動參與數(shù)學(xué)活動中.同時讓學(xué)生感到一元二次方程的解法在本章中處于非常重要的地位.

  1

  1.復(fù)習(xí)提問

 。1)什么叫做方程?曾學(xué)過哪些方程?

  (2)什么叫做一元一次方程?“元”和“次”的含義?

 。3)什么叫做分式方程?

  2.引例:剪一塊面積為150cm2的`長方形鐵片使它的長比寬多5cm,這塊鐵片應(yīng)怎樣剪?

  引導(dǎo),啟發(fā)學(xué)生設(shè)未知數(shù)列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以觀察、比較,得到整式方程和一元二次方程的概念.

  整式方程:方程的兩邊都是關(guān)于未知數(shù)的整式,這樣的方程稱為整式方程.

  一元二次方程:只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是2,這樣的整式方程叫做一元二次方程.

  3.練習(xí):指出下列方程,哪些是一元二次方程?

  (1)x(5x-2)=x(x+1)+4x2;

  (2)7x2+6=2x(3x+1);

 。3)

 。4)6x2=x;

 。5)2x2=5y;

 。6)-x2=0

  4.任何一個一元二次方程都可以化為一個固定的形式,這個形式就是一元二次方程的一般形式.

  一元二次方程的一般形式:ax2+bx+c=0(a≠0).a(chǎn)x2稱二次項,bx稱一次項,c稱常數(shù)項,a稱二次項系數(shù),b稱一次項系數(shù).

  一般式中的“a≠0”為什么?如果a=0,則ax2+bx+c=0就不是一元二次方程,由此加深對一元二次方程的概念的理解.

  5.例1 把方程3x(x-1)=2(x+1)+8化成一般形式,并寫出二次項系數(shù),一次項系數(shù)及常數(shù)項?

  教師邊提問邊引導(dǎo),板書并規(guī)范步驟,深刻理解一元二次方程及一元二次方程的一般形式.

  討論后回答

  學(xué)生設(shè)未知數(shù)列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以觀察、比較,

  獨立完成

  加深理解

  學(xué)生試解

  問題的提出及解決,為深刻理解一元二次方程的概念做好鋪墊

  反饋訓(xùn)練應(yīng)用提高

  練習(xí)1:教材P.5中1,2.

  練習(xí)2:下列關(guān)于x的方程是否是一元二次方程?為什么?若是一元二次方程,請分別指出其二次項系數(shù)、一次項系數(shù)、常數(shù)項:.

  (4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.

  教師提問及恰當(dāng)?shù)囊龑?dǎo),對學(xué)生回答給出評價,通過此組練習(xí),加強(qiáng)對概念的理解和深化

  要求多數(shù)學(xué)生在練習(xí)本上筆答,部分學(xué)生板書,師生評價.題目答案不唯一,最好二次項系數(shù)化為正數(shù).

  小結(jié)提高

 。ㄋ模┛偨Y(jié)、擴(kuò)展

  引導(dǎo)學(xué)生從下面三方面進(jìn)行小結(jié).從方法上學(xué)到了什么方法?從知識內(nèi)容上學(xué)到了什么內(nèi)容?分清楚概念的區(qū)別和聯(lián)系?

  1.將實際問題用設(shè)未知數(shù)列方程轉(zhuǎn)化為數(shù)學(xué)問題,體會知識來源于實際以及轉(zhuǎn)化為方程的思想方法.

  2.整式方程概念、一元二次方程的概念以及它的一般形式,二次項系數(shù)、一次項系數(shù)及常數(shù)項.歸納所學(xué)過的整式方程.

  3.一元二次方程的意義與一般形式ax2+bx+c=0(a≠0)的區(qū)別和聯(lián)系.強(qiáng)調(diào)“a≠0”這個條件有長遠(yuǎn)的重要意義.

  學(xué)生討論回答

  布置作業(yè)

  1.教材P.6 練習(xí)2.

  2.思考題:

  1)能不能說“關(guān)于x的整式方程中,含有x2項的方程叫做一元二次方程?”

  2)試說出一元三次方程,一元四次方程的定義及一般形式(學(xué)有余力的學(xué)生思考).

  

一元二次方程教案14

  教學(xué)目標(biāo)

  (1)會用公式法解一元二次方程;

  (2)經(jīng)歷求根公式的發(fā)現(xiàn)和探究過程,提高學(xué)生觀察能力、分析能力以及邏輯思維能力;

  (3)滲透化歸思想,領(lǐng)悟配方法,感受數(shù)學(xué)的內(nèi)在美.

  教學(xué)重點

  知識層面:公式的推導(dǎo)和用公式法解一元二次方程;

  能力層面:以求根公式的發(fā)現(xiàn)和探究為載體,滲透化歸的數(shù)學(xué)思想方法.

  教學(xué)難點:求根公式的推導(dǎo).

  總體設(shè)計思路:

  以舊知識為起點,問題為主線,以教師指導(dǎo)下學(xué)生自主探究為基本方式,突出數(shù)學(xué)知識的內(nèi)在聯(lián)系與探究知識的方法,發(fā)展學(xué)生的理性思維.

  教學(xué)過程

  整體教學(xué)流程:形成表象,提出問題

  分析問題,探究本質(zhì)

  得出結(jié)論,解決問題

  拓展應(yīng)用,升華提高

  歸納小結(jié),布置作業(yè).

  形成表象,提出問題

  在上一節(jié)已學(xué)的用配方法解一元二次方程的基礎(chǔ)上創(chuàng)設(shè)情景.

  解下列一元二次方程:(學(xué)生選兩題做)

  (1)x2+4x+2=0 ; (2)3x2-6x+1=0;

  (3)4x2-16x+17=0 ; (4)3x2+4x+7=0.

  然后讓學(xué)生仔細(xì)觀察四題的解答過程,由此發(fā)現(xiàn)有什么相同之處,有什么不同之處?

  接著再改變上面每題的其中的一個系數(shù),得到新的四個方程:(學(xué)生不做,思考其解題過程)

  (1)3x2+4x+2=0; (2)3x2-2x+1=0;

  (3)4x2-16x-3=0 ; (4)3x2+x+7=0.

  思考:新的四題與原題的解題過程會發(fā)生什么變化?

  設(shè)計意圖:1.復(fù)習(xí)鞏固舊知識,為本節(jié)課的學(xué)習(xí)打下更好的基礎(chǔ);

  2.讓學(xué)生充分感受到用配方法解題既存在著共性,也存在著不同的現(xiàn)象,由此激發(fā)學(xué)生的求知欲望.

  分析問題,探究本質(zhì)

  由學(xué)生的觀察討論得到:用配方法解不同一元二次方程的過程中,相同之處是配方的過程----程序化的操作,不同之處是方程的根的情況及其方程的根.

  進(jìn)而提出下面的問題:

  既然過程是相同的,為什么會出現(xiàn)根的不同?方程的根與什么有關(guān)?有怎樣的關(guān)系?如何進(jìn)一步探究?

  讓學(xué)生討論得出:從一元二次方程的一般形式去探究根與系數(shù)的關(guān)系.

  ax2+bx+c=0(a≠0) 注:根據(jù)學(xué)生學(xué)習(xí)程度的不同,可

  ax2+bx=-c 以采用學(xué)生獨立嘗試配方, 合x2+

  x=-

  作嘗試配方或教師引導(dǎo)下進(jìn)行

  x2+

  x+

  =-

  +

  配方等各種教學(xué)形式.

  (x+

  )2=

  然后再議開方過程(讓學(xué)生結(jié)合前面四題方程來加以討論),使學(xué)生充分認(rèn)識到“b2-4ac”的重要性.

  當(dāng)b2-4ac≥0時,

  (x+

  )2=

  注:這樣變形可以避免對a正、負(fù)的討論,

  x+

  =

  便于學(xué)生的理解.

  x=-

  即x=

  x1=

  , x2=

  當(dāng)b2-4ac<0時,

  方程無實數(shù)根.

  設(shè)計意圖:讓學(xué)生通過經(jīng)歷知識形成的全過程,從而提高自身的觀察能力、分析問題和解決問題的能力,發(fā)展了理性思維.

  得出結(jié)論,解決問題

  由上面的探究過程可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a,b,c確定. 當(dāng)b2-4ac≥0時,

  x=

  ;

  當(dāng)b2-4ac<0時,方程無實數(shù)根.

  這個式子對解題有什么幫助?通過討論加深對式子的'理解,同時讓學(xué)生進(jìn)一步感受到數(shù)學(xué)的簡潔美、和諧美.

  進(jìn)而闡述這個式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.

  運(yùn)用公式法解一元二次方程.(設(shè)計兩個環(huán)節(jié):共同練習(xí)和獨立完成)

  [共同練習(xí)]

  (1)2x2-x-1=0; (2)4x2-3x+2=0 ;

  (3)x2+15x=-3x; (4)x2-

  x+

  =0.

  此環(huán)節(jié)的設(shè)計意圖:進(jìn)一步闡述求根公式,歸納總結(jié)用公式法解一元二次方程的一般步驟.

  [獨立完成]

  用公式法解一元二次方程:

  (1)x2+x-6=0; (2)x2-

  x-

  =0; (3)3x2-6x-2=0;

  (4)4x2-6x=0; (5)x2+4x+8=4x+11; (6)x(2x-4)=5-8x.

  此環(huán)節(jié)的設(shè)計意圖:能夠熟練運(yùn)用公式法解一元二次方程,讓每位學(xué)生都有所收獲.

  拓展運(yùn)用,升華提高

  分兩個環(huán)節(jié):用一用和想一想(此環(huán)節(jié)基于學(xué)生課堂掌握的情況而定,可作為課后思考題).

  [用一用]

  解決本章引言中的問題:

  要設(shè)計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以小)的高度比,等于下部與全部的高度比,雕像的下部應(yīng)設(shè)計為多高?

  雕像上部的高度AC,下部的高度BC應(yīng)有如下關(guān)系:

  即BC2=2AC.

  設(shè)雕像下部高xm,于是得方程

  x2=2(2-x)

  整理得:x2+2x-4=0.

  解這個方程,得

  x=

  ,

  x1=-1+

  ,x2=-1-

  .

  精確到0.001,x1≈1.236,x2≈-3.236.

  考慮實際意義, x≈1.236.所以雕像下部高度應(yīng)設(shè)計約為1.236m.

  在前面的基礎(chǔ)上進(jìn)一步提問: (結(jié)合學(xué)生的實際情況,可以放在課后思考.)

  (1)如果雕像的高度設(shè)計為3m,那雕像的下部應(yīng)是多少?4m呢?

  (2)進(jìn)而把問題一般化,這個高度比是多少?

  之后簡單介紹黃金分割數(shù),使學(xué)生感受到數(shù)學(xué)的奧妙.

  此環(huán)節(jié)的設(shè)計意圖:①運(yùn)用所學(xué)的知識解決實際問題;②能力層面上的拓展----化歸思想.

  [想一想]

  清清和楚楚剛學(xué)了用公式法解一元二次方程,看到一個關(guān)于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 清清說:“此方程有兩個不相等的實數(shù)根”,而楚楚反駁說:“不一定,根的情況跟m的值有關(guān)”.那你們認(rèn)為呢?并說明理由.

  此環(huán)節(jié)的設(shè)計意圖:基于學(xué)生基礎(chǔ)較好,因此對求根公式作進(jìn)一步深化,并綜合運(yùn)用了配方法,使不同層次的學(xué)生都有不同提高.

  歸納小結(jié),布置作業(yè)

  結(jié)合上面用一用,讓學(xué)生嘗試對本節(jié)課的知識進(jìn)行梳理,對方法進(jìn)行提煉,從而使學(xué)生的知識和方法更具系統(tǒng)化和網(wǎng)絡(luò)化,同時也是情感的升華過程.

  作業(yè): (結(jié)合學(xué)生的實際情況,可以分層布置.)

 、遄鳂I(yè)本;

 、嫱貜V探索:P46第12題

 、玳喿x思考P46-----黃金分割數(shù),有興趣的同學(xué)可以上網(wǎng)查閱相關(guān)資料,或進(jìn)一步探究根與系數(shù)的其他關(guān)系.

一元二次方程教案15

  一、復(fù)習(xí)引入

  導(dǎo)語:一元二次方程的根與系數(shù)有著密切的關(guān)系,早在16世紀(jì)法國的杰出數(shù)學(xué)家韋達(dá)發(fā)現(xiàn)了這一關(guān)系,你能發(fā)現(xiàn)嗎?

  二、探究新知

  1.課本思考

  分析:將(x-x1)(x-x2)=0化為一般形式x2-(x1+x2)x+x1x2=0與x2+px+q=0對比,易知p=-(x1+x2),q=x1x2.即二次項系數(shù)是1的一元二次方程如果有實數(shù)根,則一次項系數(shù)等于兩根和的相反數(shù),常數(shù)項等于兩根之積.

  2.跟蹤練習(xí)

  求下列方程的兩根x1、x2.的和與積.

  x2+3x+2=0;x2+2x-3=0;x2-6x+5=0;x2-6x-15=0

  3.方程2x2-3x+1=0的兩根的和、積與系數(shù)之間有類似的關(guān)系嗎?

  分析:這個方程的二次項系數(shù)等于2,與上面情形有所不同,求出方程兩根,再通過計算兩根的和、積,檢驗上面的結(jié)論是否成立,若不成立,新的結(jié)論是什么?

  4.一般的一元二次方程ax2+bx+c=0(a≠0)中的a如何教育如何教育不一定是1,它的兩根的`和、積與系數(shù)之間有第3題中的關(guān)系嗎?

  分析:利用求根公式,求出方程兩根,再通過計算兩根的和、積,得到方程的兩個根x1、x2和系數(shù)a,b,c的關(guān)系,即韋達(dá)定理,也就是任何一個一元二次方程的根與系數(shù)的關(guān)系為:兩根的和等于一次項系數(shù)與二次項系數(shù)的比的相反數(shù),兩根之積等于常數(shù)項與二次項系數(shù)的比.求根公式是在一般形式下推導(dǎo)得到,根與系數(shù)的關(guān)系由求根公式得到,因此,任何一個一元二次方程化為一般形式后根與系數(shù)之間都有這一關(guān)系.

  5.跟蹤練習(xí)

  求下列方程的兩根x1、x2.的和與積.

  13x2+7x+2=0;3x2+7x-2=0;3x2-7x+2=0;3x2-7x-2=0;

  25x-1=4x2;5x2-1=4x2+x

  6.拓展練習(xí)

  1已知一元二次方程2x2+bx+c=0的兩個根是-1,3,則b=,c=.

  2已知關(guān)于x的方程x2+kx-2=0的一個根是1,則另一個根是,k的值是.

  3若關(guān)于x的一元二次方程x2+px+q=0的兩個根互為相反數(shù),則p=若兩個根互為倒數(shù),則q=.

  分析:方程中含有一個字母系數(shù)時利用方程一根的值可求得另一根和這個字母系數(shù);方程中含有兩個字母系數(shù)時利用方程的兩根的值可求得這兩個字母系數(shù).二次項系數(shù)是1時,若方程的兩根互為相反數(shù)或互為倒數(shù),利用根與系數(shù)的關(guān)系可求得方程的一次項系數(shù)和常數(shù)?

【一元二次方程教案】相關(guān)文章:

一元二次方程教案教案05-20

一元二次方程的教案08-29

一元二次方程教案09-28

一元二次方程教案09-14

一元二次方程高中教案11-28

(精選)一元二次方程高中教案01-14

《一元二次方程》教案及反思09-19

《用公式法解一元二次方程》教案09-19

《一元二次方程》說課稿03-07