丁香花无码AV在线,欧美日韩国产色,年轻人手机在线免费视频,伊人成人在线,可以直接免费观看的av网站,日本三级香港三级人妇99,亚洲免费二区

分數(shù)的基本性質(zhì)的教案

時間:2025-10-10 09:10:50 教案 我要投稿

分數(shù)的基本性質(zhì)的教案(優(yōu))

  作為一名人民教師,時常需要編寫教案,教案是實施教學的主要依據(jù),有著至關(guān)重要的作用。我們該怎么去寫教案呢?以下是小編為大家收集的分數(shù)的基本性質(zhì)的教案,希望能夠幫助到大家。

分數(shù)的基本性質(zhì)的教案(優(yōu))

分數(shù)的基本性質(zhì)的教案1

  教材分析:

  《分數(shù)的基本性質(zhì)》是義務教育課程標準實驗教材人教版五年級下冊第四單元的一個重要內(nèi)容。該教學內(nèi)容是以分數(shù)的意義、分數(shù)與除法的關(guān)系、整數(shù)除法中商不變的規(guī)律這些知識為基礎(chǔ)的。分數(shù)的基本性質(zhì)是建立在分數(shù)大小相等這一概念基礎(chǔ)之上的。而兩個分數(shù)的大小相等,并不意味著兩個分數(shù)的分子、分母分別相同。分數(shù)的基本性質(zhì)又是約分和通分的基礎(chǔ),而約分和通分則是分數(shù)四則混合運算的重要基礎(chǔ),因此,理解分數(shù)的基本性質(zhì)顯得尤為重要。

  教學目標:

  1.知識與能力:經(jīng)歷分數(shù)基本性質(zhì)的建構(gòu)過程,歸納概括并掌握分數(shù)的基本性質(zhì),能運用分數(shù)的基本性質(zhì)解決有關(guān)的數(shù)學問題。

  2.過程與方法:培養(yǎng)學生觀察、分析、比較、歸納、概括及動手實踐的能力,進一步發(fā)展學生的思維。

  3.情感、態(tài)度與價值觀:讓學生體會數(shù)學來自生活實際的需要,感受數(shù)學與生活的聯(lián)系,激發(fā)學生對數(shù)學的.興趣。

  教學重點:

  探索、發(fā)現(xiàn)和掌握分數(shù)的基本性質(zhì),并能運用分數(shù)的基本性質(zhì)解決問題。

  教學難點:

  自主探究、歸納概括分數(shù)的基本性質(zhì)。

  教具準備:

  課件

  教學過程:

  一、復習導入

  1.說出下列各分數(shù)的意義,分數(shù)單位和它包含有幾個這樣的分數(shù)單位。

  2.商不變規(guī)律。

 。1)計算:120÷30 12÷3 40÷5 400÷50

 。2)說一說,你有什么發(fā)現(xiàn)?

  (被除數(shù)和除數(shù)都縮小或擴大相同的倍數(shù),商不變。)

  二、新課講授

  1.教學例1。

  (1)動手操作:拿3張同樣的正方形紙片,分別對折一次,兩次,三次,平均分成2份,4份,8份,涂上顏色,分別用分數(shù)表示涂色部分。

  提示:你發(fā)現(xiàn)了什么?板書:(為什么相等?)

  (2)小組交流:觀察它們的分子,分母各是按照什么規(guī)律變化的?

  (3)匯報:隨著學生匯報,老師板書。

  (4)觀察以上例子,你能得出什么結(jié)論?

  分數(shù)的分子和分母同時乘或者除以相同的數(shù)(0除外),分數(shù)的大小不變。這叫做分數(shù)的基本性質(zhì)。

  提問:為什么0要除外?

  小結(jié):分子和分母如果都乘上0,則分數(shù)成為,而分數(shù)的分母不能為0;又因為0不能作除數(shù),所以分數(shù)的分子和分母也不能同時除以0。

 。5)提問:你能不能根據(jù)分數(shù)與除法的關(guān)系和商不變性質(zhì)來說明分數(shù)的基本性質(zhì)?

  2.教學例2。出示題目

  獨立完成,集體訂正,訂正時說一說根據(jù)什么。

  三、鞏固練習

  1.練習十四習題

  第1題:按要求涂色,并比較它們的大小。

  第2題:比較每組中的分數(shù)大小是否相等。

  第3題:同位合作完成。

  2.作業(yè):練習十四4、5題,選作13題。

  四、全課總結(jié)

  這節(jié)課我們學了哪些知識?分數(shù)的基本性質(zhì)是怎樣的?

  板書設(shè)計:

  分數(shù)的基本性質(zhì)

  分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

分數(shù)的基本性質(zhì)的教案2

  教學目標

  1、進一步理解分數(shù)的基本性質(zhì);并能初步運用分數(shù)的基本性質(zhì)進行約分。

  2、掌握約分的含義和約分的一般方法,學會約分的書寫形式,認識最簡分數(shù)。

  3、在知識的運用中體驗數(shù)學價值。

  教學準備:分數(shù)卡片圖片課件

  一、復習

  1、說一說:分數(shù)的基本性質(zhì)

  2、想一想:學習分數(shù)的基本性質(zhì)有什么作用?

  3、寫一寫:請你寫出和相等的分數(shù)

  在學生交流反饋后,引導學生對相等的分數(shù)做比較:分子分母都比原來大的,分子分母都比原來小的。

  二、教學例3

  出示例3:你能寫出和相等,而分子、分母都比較小的分數(shù)嗎?

  學生嘗試自主思考。

  匯報:你是怎樣想的?先在小組里交流。

  教學約分的含義。

  師:把一個分數(shù)化成同它相等,但分子分母都比較小的分數(shù),叫做約分。

  教師指出:約分要注意兩點,一是約分后得到的分數(shù)要與原來的分數(shù)相等;二是約分后得到的分數(shù)的分子分母都要比原來的分數(shù)小。

  教學約分的`書寫形式

  師:分子分母都要同時除以幾呢?

  生:分子分母同時除以2、3或者6。

  方法一:先分別除以12和18的公因數(shù)2、再分別除以6和9的公因數(shù)3。

  方法二:分別除以12和18的最大公因數(shù)6。

  規(guī)范:畫斜線的方向和商的書寫位置

  提示:熟練以后,約分可以直接寫成=

  師:約分到什么時候就不要繼續(xù)除呢?

  生:除到分子、分母只有公因數(shù)1為止。

  教學最簡分數(shù)。

  像的分子分母只有公因數(shù)1,這樣的分數(shù)叫做最簡分數(shù)。約分時,通常要約成最簡分數(shù)。

  三、課堂練習

  同步練習1:說出一個最簡分數(shù)

  同步練習2:把約成最簡分數(shù)。

  1、指出下面的哪些分數(shù)是最簡分數(shù)。

  (練一練62頁第一題)

  2、分別說出下面各分數(shù)的分子分母有沒有公因數(shù)2、3、5。

  3、分組練習(指名板演)

  練一練第二題

  練習十一第5題

  四、課堂總結(jié)

  (略)

  五、課堂作業(yè):

  練習十一第7題

分數(shù)的基本性質(zhì)的教案3

  教學目標:1,使同學理解分數(shù)的基本性質(zhì),并會應用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。

  2,培養(yǎng)同學發(fā)現(xiàn)問題和解決問題的能力。滲透"事物之間是相互聯(lián)系"的辯證唯物主義觀點。

  教學重點:掌握分數(shù)的基本的性質(zhì),能運用分數(shù)的基本性質(zhì)解決有關(guān)的問題。

  教學難點:理解分數(shù)的基本的性質(zhì)。

  教學課型:新授課

  具準備:課件

  教學過程:

  一,復習鋪墊,準備遷移 [課件1]

  1,120÷30的商是多少 被除數(shù)和除數(shù)都擴大3倍,商是多少被除數(shù)和除數(shù)都縮小10倍呢

  2,比較下列每組數(shù)的大小。

  3/4( )3/5 15/20( )4/20

  3,把下面的分數(shù)改寫成兩個數(shù)相除的形式。

  2/3=( )÷( ) 5/8=( )÷( )

  二,探索新知,發(fā)展智能

  1,同學操作:將手中的紙圓片平均分成若干份。

  2,反饋。

  (1)提問:A,若要求剪下其中的一半,想想剪下的份數(shù)各自占圓的幾分之幾

  B,雖然每個同學所剪的份數(shù)不同,但它們之間大小關(guān)系怎樣

  板書: 1/2=2/4=3/6

  C,觀察一下:這些分數(shù)的分子,分母變化有什么規(guī)律

 。2)引導同學概括出分數(shù)的基本性質(zhì),并與前面的猜測相回應。

 。3)小結(jié):這里的"相同的數(shù)",是不是任何數(shù)都可以呢

 。愠猓

  板書:分數(shù)的分子和分母同時乘上或者除以相同的數(shù)(0除外),分數(shù)的大小不變。

  3,分數(shù)的基本性質(zhì)與商不變的性質(zhì)的比較。

  提問:在除法里有商不變的性質(zhì),在分數(shù)里有分數(shù)的基本性質(zhì)。想一想:根據(jù)分數(shù)與除法的關(guān)系以和整數(shù)除法中商不變的.性質(zhì),你能說明分數(shù)的基本性質(zhì)嗎

  4,鞏固認識。

  P109 。1

 。2)說數(shù)接龍。

  5/6=5+5/( )……

  三,運用延伸,深化概念

  1,要求大小不變。[課件2]

  1/3=( )/6 10/15=( )/6 1/4=5/( )

  2,下面分數(shù)中哪兩個分數(shù)相等 [課件3]

  3/4 21/32 15/20 1/5 4/20

  習后提問:A,依據(jù)是什么

  B,3/4和1/5哪個大 你是怎么比較出來的

  C,那么,從中你又有什么新發(fā)現(xiàn) 你的新發(fā)現(xiàn)是什么

  四,全課總結(jié)

  提問: A,這節(jié)課你學習了什么

  B,運用分數(shù)的性質(zhì),你能做什么

  C,本節(jié)課你還有哪些疑問 你還想從哪些方面去探索分數(shù)

  的知識呢

  五,家作

  P109 。3,5,6

  板書設(shè)計: 分數(shù)的基本性質(zhì)

  1/2=2/4=3/6

  分數(shù)的分子和分母同時乘上或者除以相同的數(shù)(0除外),分數(shù)的大小不變。

分數(shù)的基本性質(zhì)的教案4

  教學內(nèi)容:

  人教版小學數(shù)學第十冊第107頁至108頁。

  教學目標:

  1、分數(shù)的基本性質(zhì)包括分子和分母的關(guān)系,分子代表分數(shù)的份數(shù),分母代表每份的份數(shù)。分數(shù)的大小取決于分子和分母的比例關(guān)系,分子越大,分數(shù)越大;分母越大,分數(shù)越小。我們可以通過改變分數(shù)的分子和分母,使分數(shù)的大小保持不變。

  2、能力目標:培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。

  3、情感目標:讓學生在學習過程中養(yǎng)成互相幫助、團結(jié)協(xié)作的良好品德。

  教學準備:

  長方形紙片、彩筆、各種分數(shù)卡片。

  教學過程:

  一、創(chuàng)設(shè)情境,激發(fā)興趣

  同學們,今天是個特別的日子,老師祝大家節(jié)日快樂!在我們慶祝自己的節(jié)日的同時,花果山圣地也洋溢著節(jié)日的喜慶氣氛。讓我們一起共同享受這美好的時刻吧!

  【六一節(jié)到了,猴山上張燈結(jié)彩,小猴們享受著節(jié)日的快樂。猴王給小猴們做了三塊他們愛吃的餅。它先把第一塊餅平均切成四塊,分給第一只小猴貝貝一塊。第二只小猴佳佳見到說:“太小了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成八塊,分給第二只小猴兩塊。第三只小猴丁丁急了,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給第三只小猴丁丁三塊。貝貝、佳佳見了,連忙說:“猴爺爺,不公平,不公平,我們要分得和丁丁的同樣多!薄

  “同學們,猴王真的分得不公平嗎?”

  二、動手操作、導入新課

  同學們,好的,讓我們一起來分一分。在這個故事中,猴王將香蕉分成了三份,每份都是一樣的。這告訴我們公平是很重要的,每個人都應該得到公平的待遇。我們在日常生活中也要學會公平地對待他人,尊重他人的權(quán)利和利益,F(xiàn)在,請每組拿出課前準備的`三張長方形紙片,共同來分一分,并完成操作報告。請小組長分工一下,明確記錄的同學。完成后,請上傳操作報告。

  任選一小組的同學臺前展示實驗報告,并 匯報 結(jié)論。

  教師根據(jù)學生 匯報 板書:14=28=312

  2.組織討論。

 。1)通過操作我們發(fā)現(xiàn)三只猴子分得的餅同樣多,表示它們分得餅的分數(shù)是相等關(guān)系。那么,這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。

 。2)猴王把三塊大小一樣的香蕉分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的數(shù)量嗎?觀察演示得出結(jié)論,教師板書:2=4=6。

  3.引入新課:

  我們今天來探討黑板上兩組相等的分數(shù)有什么共同的特點。同學們,觀察一下黑板上的兩組分數(shù),它們看起來不同,但卻有一個共同之處:無論分子和分母如何變化,這兩組分數(shù)的大小始終保持不變。這讓我們思考一個問題:這些分數(shù)的分子和分母之間是否存在某種規(guī)律呢?讓我們一起來探討這個變化規(guī)律。

  三、比較歸納,揭示規(guī)律。

  好的,讓我們一起來探究一組相等分數(shù)。請你們選擇黑板上的任意一組相等分數(shù),然后共同討論、探究,并完成探究報告。探究報告請寫在紙上,準備好后我來收取。祝你們成功!

  1.課件出示探究報告。

  2.分組匯報,歸納性質(zhì)。

  (1)學生們根據(jù)探究報告觀察到,在這個數(shù)列中,分子和分母的變化規(guī)律是分子每次遞增1,分母每次遞減2。接下來讓我們選擇一組學生到黑板上邊說邊用箭頭表示出分子和分母的變化過程。

 。ǜ鶕(jù)學生回答板書:同時乘上 相同的數(shù))

 。2)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?

  (根據(jù)學生的回答板書:除以 )

 。3)有與這一組探究的分數(shù)不一樣的嗎?你們得出的規(guī)律是什么?

  (4)綜合剛才的探究,你發(fā)現(xiàn)什么規(guī)律?

  根據(jù)學生的回答,揭示課題,(……這叫做板書:分數(shù)的基本性質(zhì))

  對這句話你還有什么要補充的?(補充“零除外”)

  討論:為什么性質(zhì)中要規(guī)定“零除外”?

 。t筆板書:零除外)

 。5)分數(shù)的基本性質(zhì)包括相同分母(或相同分子)的分數(shù)可以比較大小,相同分母的分數(shù)相加(或相減)時保持分母不變,相同分子的分數(shù)相加(或相減)時保持分子不變,分數(shù)乘除法時分子相乘(或分子相除)、分母相乘(或分母相除)。在這些基本性質(zhì)中,需要提醒大家注意的是:分數(shù)的乘法和除法運算時,一定要將分數(shù)化簡至最簡形式,即分子與分母互質(zhì),避免出現(xiàn)不必要的誤解和計算錯誤。例如,$frac{4}{6} imes frac{3}{4} = frac{1}{2}$,而不是$frac{3}{6}$或$frac{4}{4}$。

  師生共同讀出黑板上板書的分數(shù)基本性質(zhì)(要求關(guān)鍵的字詞要重讀)。

  3、智慧眼(下列的式子是否正確?為什么?)

 。1)35=3×25=65 (生:35的分子與分母沒有同時乘以2,分數(shù)的大小改變。)

 。2)512=5÷512÷6=12 (生:512的分子除以5,分母除以6,除數(shù)的大小不同,分數(shù)的大小也不同)

 。3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,沒有同時乘以或除以,分數(shù)的大小不相等。)

  (4)25=2×x5×x=2x5x (生:x在這里代表任何數(shù),當x=0時,分數(shù)的大小改變。)

  4、猴王分餅的規(guī)律是每次將餅分成若干塊,然后讓小猴子選擇一塊,猴王自己取走剩下的塊數(shù)。這樣可以確保每次分配都是公平的。如果小猴子要四塊,猴王可以將餅分成5塊,讓小猴子選擇其中的1塊,那么猴王自己就可以取走剩下的4塊,這樣分配是公平的。如果小猴子要五塊,猴王可以將餅分成6塊,讓小猴子選擇其中的1塊,那么猴王自己就可以取走剩下的5塊,這樣分配也是公平的。

  三、回歸書本,探源獲知

  1、瀏覽課本第107—108頁的內(nèi)容。

  2、看了書,你又有什么收獲?還有什么疑問嗎?

  3、師生答疑。

  你會運用分數(shù)與除數(shù)的關(guān)系,以及整數(shù)除法中商不變的性質(zhì),說明分數(shù)的基本性質(zhì)嗎?

  4、自主學習并完成例2,請二名學生說出思路。

  四、多層練習,鞏固深化。

  1、熱身房。35=3×()5×()=9()

  824=8÷()24÷()=()3

  學生口答后,要求說出是怎樣想的?

分數(shù)的基本性質(zhì)的教案5

  設(shè)計說明

  1.注重情境創(chuàng)設(shè),激發(fā)學生的學習興趣。

  偉大的科學家愛因斯坦說過:“興趣是最好的老師。”也就是說一個人一旦對某個事物產(chǎn)生了濃厚的興趣,就會主動地去求知、去探索、去實踐,并在求知、探索、實踐中產(chǎn)生愉快的情緒,因此教學時要重視興趣在智力開發(fā)中的作用。本課時的教學通過分餅這一故事情境來創(chuàng)設(shè)一種和諧、愉悅的氣氛,激發(fā)學生的學習興趣和探究新知的積極性。聽教師講完故事之后,學生能說出三個孩子分到的餅的大小是一樣的,并能非常流利地說出三個孩子分別分到每張餅的,,。接著教師提問設(shè)疑,導入新課。

  2.突出學生的主體地位,在實踐操作中掌握新知。

  學生是學習的主體,教師要時刻關(guān)注學生的主體地位。在探究分數(shù)的基本性質(zhì)的過程中,給予學生充分的學習空間,讓學生自主探究,經(jīng)歷折一折、畫一畫、剪一剪、比一比的過程,得出分數(shù)的基本性質(zhì),體驗成功的快樂。

  課前準備

  教師準備 PPT課件

  學生準備 若干張同樣大小的圓形紙片 彩筆

  教學過程

  ⊙故事引入

  1.教師講故事。

  師:老師給大家講一個分餅的故事,你們想聽嗎?(想)三毛家有三兄弟,三兄弟都特別愛吃餅。一天,媽媽買回3張同樣大小的餅,準備分給他們?nèi)值艹裕瑡寢屜劝训谝粡堬炂骄殖蓛煞,取出其中的一份給了大毛;二毛看見了,說:“太少了,我要吃兩份。”媽媽點點頭,把第二張餅平均分成四份,取出其中的兩份給了二毛;三毛連忙說:“我最小,我要比他們多吃一些,我要吃四份!眿寢層贮c點頭,把第三張餅平均分成八份,取出其中的四份給了三毛。

  大毛、二毛、三毛都滿意地笑了,媽媽也笑了。

  設(shè)計意圖:借助故事給學生創(chuàng)設(shè)一個溫馨的學習情境,自然導入新課,迅速吸引學生的注意力,激發(fā)學生的學習興趣。

  2.探究驗證。

  (1)提出猜想。

  師:同學們,你們知道三兄弟之間到底誰分得的餅多嗎?

  生:同樣多。

  師:這只是大家的猜想,大家的猜想對不對呢?下面就讓我們當一次小數(shù)學家,一起來驗證這個猜想吧!

  (2)驗證猜想。

  請同學們拿出課前準備好的圓形紙片,模擬一下媽媽給三兄弟分餅的情境。

 、僬垡徽郏喊衙繌垐A形紙片都看作單位“1”,分別把它們平均折成2份、4份、8份。

 、谕恳煌浚涸谡酆玫膱A形紙片上分別把其中的1份、2份、4份涂上顏色,并用分數(shù)表示出來。

 、奂粢患簦喊褕A形紙片中的涂色部分剪下來。

 、鼙纫槐龋喊鸭粝碌腵涂色部分重疊,比一比。

  師:通過比較,結(jié)果是怎樣的?

  生:同樣大。

  設(shè)計意圖:通過自主猜想、自主驗證、自主發(fā)現(xiàn),讓學生在折一折、涂一涂、剪一剪、比一比、說一說的實踐活動中把靜態(tài)的知識轉(zhuǎn)化為動態(tài)的求知過程,經(jīng)歷分數(shù)的基本性質(zhì)的形成過程。

  3.揭示課題。

  師:三兄弟分得的餅同樣多,那媽媽是用什么辦法來滿足他們的要求并且又分得那么公平的呢?這就是我們今天要學習的內(nèi)容:分數(shù)的基本性質(zhì)。(師板書,生齊讀課題)

  ⊙探究新知

  1.觀察比較,探究規(guī)律。

  (1)請同學們觀察,比較三個分數(shù)的大小。

  師:三兄弟分得的餅同樣多,那么這三個分數(shù)的大小是怎樣的呢?(相等)

  師:從這里我們可以知道,三兄弟分得的餅和剩下的餅同樣多,都是一張餅的一半。

  (2)請同學們仔細觀察,這三個分數(shù)什么變了,什么沒變?(分子、分母變了,大小沒變)

  師:這三個分數(shù)的分子、分母都不一樣,大小卻相等,這其中到底蘊藏著什么奧秘呢?

  (課件出示:比較它們的分子和分母)

 、購淖笸铱矗前凑帐裁匆(guī)律變化的?

 、趶挠彝罂,又是按照什么規(guī)律變化的?小組內(nèi)討論,交流一下你們的發(fā)現(xiàn)。

  師:我們從左往右看,誰愿意說一說自己的發(fā)現(xiàn)?(分數(shù)的分子和分母同時乘相同的數(shù),分數(shù)的大小不變)

  師:我們從右往左看,誰愿意說一說自己的發(fā)現(xiàn)?[分數(shù)的分子和分母同時除以相同的數(shù)(0除外),分數(shù)的大小不變]

  師:你們能把這兩個發(fā)現(xiàn)合并成一句話嗎?[分數(shù)的分子和分母同時乘或者除以相同的數(shù)(0除外),分數(shù)的大小不變]

  師:請同學們思考一下,這個數(shù)為什么不能是0?同桌之間討論。(因為在分數(shù)中,分母不能為0,并且在除法里,0不能作除數(shù),所以這個數(shù)不能是0)

  (3)教師總結(jié)分數(shù)的基本性質(zhì)。(板書)

分數(shù)的基本性質(zhì)的教案6

  教學內(nèi)容:教材第78~79頁分數(shù)的基本性質(zhì)和數(shù)的改寫方法、“練一練”,練習十五第11—18題。

  教學要求:

  1.使學生加深理解分數(shù)的基本性質(zhì),認識分數(shù)與小數(shù)基本性質(zhì)的聯(lián)系,能比較熟練地應用分數(shù)的基本性質(zhì)進行通分和約分。

  2.使學生進一步掌握小數(shù)、分數(shù)和百分數(shù)互化的方法,能比較熟練地進行互化。

  教學過程:

  一、揭示課題

  1.學生練習。

  (1)下面各數(shù)有什么關(guān)系?為什么,0.3 O.30 O.300

  學生回答后板書:0.3=O.30=O.300。指出;在小數(shù)的末尾添上;蛉サ鬙,小數(shù)的大小不變。這是小數(shù)的性質(zhì)。

  (2)提問:分數(shù)與除法有什么關(guān)系?

  誰來說一說除法的商不變規(guī)律是什么?

  2.引入課題。

  在除法里有商不變的規(guī)律,根據(jù)分數(shù)與除法的關(guān)系,在分數(shù)里也有類似的規(guī)律,這就是我們今天先要復習的分數(shù)的基本性質(zhì)。(板書:分數(shù)的基本性質(zhì))

  二、復習分數(shù)的基本性質(zhì)

  1.說明分數(shù)的基本性質(zhì)。

  提問;你能根據(jù)除法商不變的規(guī)律,說出分數(shù)的基本性質(zhì)嗎?(出示分數(shù)的基本性質(zhì))誰來用分數(shù)舉例說出分數(shù)的'基本性質(zhì)?(根據(jù)回答板書分數(shù)等式)大家來把第78頁上的例子填寫完整。填寫后集體校對。說明:這個例子也表示分數(shù)的分子、分母都乘或除以。以外的數(shù),大小不變。

  2.學生練習。

  (1)做“練一練”第1題。

  讓學生填在課本上,然后集體校對。說明:根據(jù)分數(shù)的基本性質(zhì),可以把一個分數(shù)寫成和原來分子、分母不同,但大小不變的分數(shù)。

  (2)做練習十五第12題。

  小黑板出示,指名口答,老師板書。

  3.認識分數(shù)與小數(shù)性質(zhì)的聯(lián)系。

  提問:大家思考一下,這里的O.3=O.30=0.300能不能改寫成用分數(shù)表示?大家仔細觀察,上面等式表示什么,下面等式表示什么,改寫后得出的這兩個等式說明什么?為什么小數(shù)的性質(zhì)和分數(shù)的基本性質(zhì)會是一樣的?指出:從上一節(jié)課我們知道,小數(shù)實際上是分母是10、100、1000……的分數(shù)的另一種表示形式,所以小數(shù)的性質(zhì)和分數(shù)的基本性質(zhì)是一致的。小數(shù)末尾添上O,實際上就相當于分子、分母同時乘l0,或100、1000……。這樣的數(shù),所以小數(shù)大小不變;小數(shù)末尾去掉O,實際上就相當于分子、分母同時除以10,或100、1000……這樣的數(shù),所以小數(shù)大小也不變。

  4.復習通分和約分。

  (1)提問:分數(shù)的基本性質(zhì)有哪些應用?

  (2)做“練一練”第2題。

  指名兩人板演,其余學生做在練習本上。集體訂正。提問,通分和約分有什么聯(lián)系?(都應用分數(shù)的基本性質(zhì))通分和約分有什么不同?

  三、復習小數(shù)、分數(shù)和百分數(shù)互化

  1.說明:我們已經(jīng)復習了分數(shù)的基本性質(zhì)及它的應用,接下來再復習小數(shù)、分數(shù)和百分數(shù)的改寫。(板書:數(shù)的改寫)

  2.整理方法.

  提問:小數(shù)和分數(shù)之間怎樣互化?(照第79頁圖解板書)你能舉出例子嗎?(板書所舉的例子)你明白為什么這樣改寫嗎?(說明理由)小數(shù)和百分數(shù)之間怎樣互化?(照圖解板書)誰來舉出小數(shù)和百分數(shù)互化的例子?(板書例子)說明:因為兩位小數(shù)就是百分之幾,所以兩位小數(shù)的部分就是百分之幾分子里的整數(shù)部分,而百分之幾用小數(shù)表示,去掉百分號,就要把原來分子部分縮小100倍。分數(shù)和百分數(shù)怎樣互化,(照圖解板書)誰來舉例說明?(板書例子)為什么分數(shù)和百分數(shù)要這樣改寫,3.做“練一練”第3題。

  讓學生做在課本上。小黑板出示,指名口答,老師板書。

  4.學生練習。

  (1)做練習十五第13題。

  指名學生口答。

  (2)提問:分數(shù)都能化成有限小數(shù)嗎?怎樣的分數(shù)可以化成有限小數(shù)?指出:根據(jù)小數(shù)、分數(shù)和百分數(shù)之間的聯(lián)系,小數(shù)、分數(shù)和百分數(shù)之間是可以互化的。我們可以通過數(shù)的互化解決不同數(shù)的大小比較。

  (3)思考練習十五第15題。

  指名說一說每道題可以怎樣比較大小。

  四、綜合練習

  1.讓學生把練習十五第16題做在課本上。

  小黑板出示,學生口答,老師板書。

  2.做練習十五第17題。

  提問:你估計一下,摸出紅鉛筆的次數(shù)大約是多少?為什么?根據(jù)你的估計算一算,摸出紅鉛筆的次數(shù)大約占總次數(shù)的幾分之幾?還可以怎樣想到大約占總次數(shù)的 ?

  五、課堂小結(jié)

  1.這節(jié)課復習了哪些內(nèi)容?你有哪些收獲?

  2.讓學生說一說常用數(shù)據(jù)的結(jié)果。

  六、布置作業(yè)

  課堂作業(yè):練習十五第14、15題。

  家庭作業(yè):練習十五第18題。

分數(shù)的基本性質(zhì)的教案7

  教學目標

  進一步理解掌握分數(shù)基本性質(zhì)在通分中的運用,能熟練而靈活地運用通分的方法進行分數(shù)的大小比較。

  教學重難點

  旋擇適當?shù)姆椒ㄟM行分數(shù)的大小比較。

  教學準備 分數(shù)卡片

  教學過程

  一、基本練習

  學生自由練習

  互相說一個分數(shù),再通分。

  學生匯報 糾錯

  二、集中練習

  教師出示:比較下面各組分數(shù)的大小

  1、 和 和

  2、 和 和

  請同學評講

  課本練習68頁第九題 把下面分數(shù)填入合適的'圈內(nèi)。

  比 大的分數(shù)有:

  比 小的分數(shù)有:

  師生討論:怎樣快速的分類?

  自由說一個比 的分數(shù)。并說出理由。

  三、解決實際問題的練習

  小明:我10步走了6米,

  小紅:我7步走了4米。

  問:誰的平均步長長一些?

  小組討論,明確解題步驟。

  小明:6÷10= =

  小紅:4÷7=

  因為 = = >

  所以 >

  答:小明的平均步長長一些。

  四、拓展練習:

  下面3名小棋手某一天訓練的成績統(tǒng)計

  總盤數(shù)贏的盤數(shù)贏的盤數(shù)占總數(shù)的幾分之幾

  張129

  李107

  趙138

  誰的成績最好?

  小組合作集體解決題型。

  三個分數(shù)的大小比較,怎樣比較較好?

  五、課堂作業(yè)

  68頁第11題

分數(shù)的基本性質(zhì)的教案8

  教學目的:

  1、理解分數(shù)的基本性質(zhì);

  2、初步掌握分數(shù)性質(zhì)的應用;

  3、培養(yǎng)學生觀察——探索——抽象——概括的能力;

  4、滲透事物是相互聯(lián)系、發(fā)展變化的辯證唯物主義觀點。

  教學重點:

  從相等的分數(shù)中看出變與不變,觀察、發(fā)現(xiàn)、概括其中的規(guī)律。

  教學難點:

  形成對分數(shù)的基本性質(zhì)的統(tǒng)一認知。

  教學準備:多媒體,自制演示教具。

  教學過程:

  一、激趣引新:

  1、有位老爺爺把一塊地分給三個兒子。老大分到了這塊地的1/3,老二分到這塊地的2/6,老三分到這塊地的3/9。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈的笑起來,給他們講了幾句話,三兄弟就停止了爭吵。你知道阿凡提為什么會笑?他對三兄弟說了那些話?你想知道嗎?這節(jié)課我們就來解決這個問題。

  2、在下面的()中填上合適的數(shù)。

  1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)

  同學們現(xiàn)在已經(jīng)能用分數(shù)的知識來解決問題了。

  二、啟發(fā)引導,探索新知。

  1、下面是六年級三個班的同學到三塊同樣大小面積的正方形地里去種樹,哪個班種植的面積大一些呢?

  通過圖形的平移、旋轉(zhuǎn)等方法看出三個班種植面積一樣大。

  2.引導觀察得出結(jié)論。

 。1)通過拼圖得到1/2=2/4=4/8

 。2)引導觀察、比較,提出問題:分子,分母都不相同,它們的大小為什么相同呢?

  (3)引導思考探索變化規(guī)律:

  從左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8

  反過來看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

  3.共同討論,引導學生抽象概括出分數(shù)的基本性質(zhì):

  (1)怎么做能使分數(shù)的分子和分母發(fā)生變化,而分數(shù)的大小都不變呢?

 。2)變化時同時乘或除以小數(shù)可以嗎?

 。3)0可以嗎?3/4=3×0/4×0=?(分數(shù)的分母不能為0,在除法里0不能作除數(shù),分子和分母都乘或除以相同的數(shù),這個數(shù)不能是0。)

  歸納分數(shù)基本性質(zhì):分數(shù)的分子和分母都乘或除以相同的數(shù)(0除外)分數(shù)的大小不變。

  4.學習分數(shù)的`基本性質(zhì)以后,感覺過去我們學過類似的性質(zhì)是什么呢?(商不變的性質(zhì))

 。1)練習在□中填上合適的數(shù)

  1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)

 。2)你能把1÷2這個除法算式改寫成分數(shù)形式?

  你能用今天所學的知識解決老爺爺分地的問題嗎?(學生交流、匯報)

  5.組織練習

 。1)判斷:

  1/5=1/5×3=1/5()

  5/6=5×2/6×3=10/18()

  8/12=8×4/12÷4=32/3()

  2/5=2+2/5+2=4/7()

  3/4=3÷0.5/4÷0.5()

  分數(shù)的分子和分母都乘或除以相同的數(shù),分數(shù)的大小不變。()

  (2)畫一畫、填一填

 。3)填空

  1/2=1×()/2×()=6/()

  10/24=10○()/24○()=()/12

  15/60=()/203/()=9/12

  6/18=()/()=()/()(有多少種填法)

  6.通過練習在此性質(zhì)中哪些是關(guān)鍵詞?

  7.鞏固練習(選擇你喜歡的一題來做)

 。1)與1/2相等的分數(shù)有多少個?想象一下把手中正方形的紙無限地平分下去,可得到多少個與1/2相等的分數(shù)?

 。2)9/24和20/32哪一個數(shù)大一些,你能講出判斷的依據(jù)嗎?

  三、課堂總結(jié)

  今天這節(jié)課同學們學了分數(shù)的基本性質(zhì),有什么感想呢?回家講給爸爸媽媽聽好嗎!同時希望同學們把今天所學的知識運用到今后的學習和生活中去,做一個生活的有心人。

  四、課堂作業(yè):練習十四第1——3題。

  板書設(shè)計:

  分數(shù)的基本性質(zhì)

  1/2=1×2/2×2=2/4=2×2/4×2=4/8

  分數(shù)的分子和分母同時乘以一個不為0的數(shù)分數(shù)的大小不變

  4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

  分數(shù)的分子和分母同時除以一個不為0的數(shù)分數(shù)的大小不變

  綜上所述分數(shù)的基本性質(zhì)是:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

分數(shù)的基本性質(zhì)的教案9

  《分數(shù)基本性質(zhì)》教學設(shè)計

  教學內(nèi)容

  人教版新課標教科書小學數(shù)學第十冊第75~77頁例

  1、例2。教案背景

  本課題是人教版五年級數(shù)學下冊第四單元的內(nèi)容,分數(shù)的基本性質(zhì)在分數(shù)教學中占有十分重要的地位,它是約分、通分的理論依據(jù),而約分、通分又是分數(shù)四則運算的重要基礎(chǔ)。只有理解和掌握分數(shù)的基本性質(zhì),能比較熟練地進行約分和通分,才能應用四則運算的法則正確、迅速地進行分數(shù)四則運算。因此,分數(shù)的基本性質(zhì)是分數(shù)的意義和性質(zhì)這一單元的教學重點之一。掌握分數(shù)與除法的關(guān)系,以及除法中被除數(shù)、除數(shù)同時擴大或同時縮小相同的倍數(shù)商不變的規(guī)律,是學好分數(shù)基本性質(zhì)的基礎(chǔ)。

  教學目標

  1、知識與技能目標:

  (1)經(jīng)歷探索分數(shù)的基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。(2)能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)

  2、過程與方法目標:

  (1)經(jīng)歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數(shù)的基本性質(zhì)作出簡要的、合理的說明。(2)培養(yǎng)學生的觀察、比較、歸納、總結(jié)概括能力

  (3)能根據(jù)解決問題的需要,收集有用的信息進行歸納,發(fā)展學生的歸納、推理能力。

  3、情感態(tài)度與價值觀目標:

  (1)經(jīng)歷觀察、操作和討論等數(shù)學學習活動,使學生進一步體驗數(shù)學學習的樂趣。

  (2)鼓勵學生敢于發(fā)現(xiàn)問題,培養(yǎng)學生勇于解決問題的學習品質(zhì)

  教材分析

  本節(jié)教材圍繞著分數(shù)基本性質(zhì)的得出與應用,安排了兩道例題。通過例

  1,概括出分數(shù)基本性質(zhì)。通過例2,運用、鞏固分數(shù)的基本性質(zhì)?紤]到分數(shù)的基本性質(zhì)是建立在分數(shù)大小相等這一概念基礎(chǔ)之上的。而兩個分數(shù)的大小相等,并不意味著兩個分數(shù)的分子、分母分別相同。這是分數(shù)與整數(shù)的區(qū)別。因此,教材在例1中,先讓學生通過折紙、涂色,感悟1/

  2、2/

  4、4/8三個分數(shù)的分子、分母雖然不同,但是分數(shù)的大小是相等的。接著引導學生探究三個分數(shù)的分子和分母是按照什么規(guī)律變化的。先從左往右看,再反過來從右往左看,引導學生發(fā)現(xiàn)三個分數(shù)的分子和分母是怎樣變化的。然后,要求學生自己進一步舉例驗證,并根據(jù)這些例子歸納出變化的規(guī)律。在此基礎(chǔ)上,教材給出了分數(shù)的基本性質(zhì)。由于分數(shù)和整數(shù)除法有著內(nèi)在聯(lián)系,分數(shù)的分子相當于除法中的被除數(shù),分母相當于除數(shù),分數(shù)值相當于除法中的商,所以分數(shù)的基本性質(zhì)也可以利用整數(shù)除法中商不變的性質(zhì)來說明。充分利用這一聯(lián)系,有利于促進學習的遷移。因此,教材在導出分數(shù)的基本性質(zhì)之后,又提出了一個問題,讓學生根據(jù)分數(shù)與除法的關(guān)系以及整數(shù)除法中商不變的性質(zhì),來說明分數(shù)的基本性質(zhì)。為了幫助學生在運用的過程中鞏固和加深對分數(shù)基本性質(zhì)的理解,教材安排了例2,引導學生運用分數(shù)的基本性質(zhì),按指定的分母把兩個分數(shù)都化成分母相同而大小不變的分數(shù)。這樣不僅可以幫助學生掌握分數(shù)的基本性質(zhì),而且也能為后面學習約分、通分做好準備。練習中適當減少了單純依靠計算解決的練習題,增加了聯(lián)系現(xiàn)實生活,可以依據(jù)分數(shù)基本性質(zhì)解決的實際問題。如練習十四的第2題、第5題、第9題和第10題。有利于通過應用,促進學生掌握分數(shù)的基本性質(zhì),也有利于培養(yǎng)學生的數(shù)學應用意識。在本節(jié)教材中,還穿插安排了一個“生活中的數(shù)學”欄目,介紹了分數(shù)在日常生活中的一些應用。涉及洗手液的使用方法、足球比賽的進程、照相機的曝光速度。這些例子,有助于引起學生的興趣,關(guān)注分數(shù)在現(xiàn)實生活中的種種應用。教學重點

  探索、發(fā)現(xiàn)和掌握分數(shù)的基本性質(zhì),并能運用分數(shù)的基本性質(zhì)解決問題。教學難點

  自主探究、歸納概括分數(shù)的基本性質(zhì)。

  教法

  引撥法,多媒體教學法,實驗法,歸納法,談話法等。學法

  猜想驗證實驗法,討論法,小組合作法等。學生分析

  五年級學生對于抽象的數(shù)學學習會感覺枯燥無味,所以要使學生對于本

  節(jié)課有很好的收獲,就必須得給本節(jié)課的'學習加以趣味性,并且讓學生經(jīng)歷知識的形成過程,以幫助學生鞏固所學知識。

  教學過程:

  一、故事引人,揭示課題:師:同學們,你們喜歡看《喜羊羊與灰太狼》的故事嗎?生:喜歡。

  師:老師這里有一個慢羊羊村長分餅的故事。羊村的小羊最喜歡吃村長

  做的餅。有一天,村長做了三塊大小一樣的餅分給小羊們吃,它先把第一塊餅的1/2分給懶羊羊。再把第二塊餅的2/4分給喜羊羊。最后把第三塊餅的4/8分給美羊羊。懶羊羊不高興地說:“村長不公平,他們的多,我的少。”

  師:孩子們,村長公平嗎?小朋友們,你知道哪只羊分得多?生1:不公平,美羊羊分得多。

  生2:公平,因為他們分得一樣多。

  二、探究新知,解決問題

 。ㄒ唬炞C猜想

  師:到底誰的猜想是正確地呢?讓我們一起來驗證一下。

  1、折一折,畫一畫,剪一剪,比一比(1)折

  請同學們拿出三張同樣大小的正方形紙,把每張紙都看作單位“1”。用

  手分別平均折成2份、4份、8份。

 。2)畫

  在折好的正方形紙上,分別把其中的2份、4份、8份畫上陰影。(3)剪把正方中的陰影部分剪下來。

 。4)比把剪下的陰影部分重疊,比一比結(jié)果怎樣。要求:

  1)三人為一小組,小組中每人選擇一個不同的分數(shù),先折一折,再畫一

  畫,剪一剪的方法把它表現(xiàn)出來。

  2)三人做好之后,將三副圖進行比較,看看能發(fā)現(xiàn)什么?3)學生匯報。

  請這一小組同學談談發(fā)現(xiàn):通過比較,三副圖陰影部分面積一樣,因而

  三個分數(shù)一樣大。

  4)教師課件出示1/

  2、2/

  4、4/8相等的過程。

  2、師:三只小羊分得的餅同樣多,仔細觀察這三個分數(shù)什么變了?什么沒變?

  小組合作,學生仔細觀察,討論,學生匯報小結(jié):它們的分子和分母變化了,但分數(shù)的大小沒變。

 。ǘ┏醪礁爬ǚ謹(shù)基本性質(zhì)算一算:

  1、師:這三個分數(shù)的分子、分母都不相同,為什么分數(shù)的大小卻相等的?你們能找出它們的變化規(guī)律嗎?請三人為一組,討論這個問題。

  2、學生小組合作,觀察,討論。

  自學提示:

  A、從左到右觀察,想一下,這三個分數(shù)的分子、分母怎樣變化才能得到下一個分數(shù),且分數(shù)的大小不變呢。

  B、從右到左觀察,想一下,這三個分數(shù)的分子、分母怎樣變化才能得

  到下一個分數(shù),且分數(shù)的大小不變呢。

  3、小組匯報生:我發(fā)現(xiàn)了1/2的分子與分母同時乘以2得到了2/4,1/2的分子和分

  母同時乘以4得到了4/8。

  請二名同學重復。

  師:你們想得一樣嗎?我把1/2的分子分母同時乘2得到了2/4,1/2的

  分子和分母同時乘4又得到了4/8。在這個分數(shù)中我們是把分子分母同時乘2,分數(shù)的大小不變,那如果我們把分數(shù)的分子分母同時乘5,分數(shù)的大小變嗎?同時乘以呢?那你們能不能根據(jù)這個式子來總結(jié)一個規(guī)律呢?(課件同時出示變化過程)

  生回答:一個分數(shù)的分子分母同時乘相同的數(shù),分數(shù)的大小不變。請一至二名同學回答。

  師板書:分數(shù)的分子分母同時乘相同的數(shù),分數(shù)的大小不變。

  師:誰來舉一個例子。指名三位同學回答,師板書,并問:同時乘以了幾?師:這樣的例子我們可以舉出很多很多,剛才我們是從左往右觀察的,如果把這個式子從右往左觀察,你們又會發(fā)現(xiàn)什么呢?(點擊課件出示)請一同學回答,生:我們發(fā)現(xiàn)了4/8的分子與分母同時除以2得了2/4,4/8的分子與分母同時除以4得到了1/2。課件點擊出示同時變化過程。師:嗯,分數(shù)的分子分母同時除以2分數(shù)的大小不變,如果同時除以5大小會變嗎?同時除以呢?能不能根據(jù)這個式子再總結(jié)出一句話呢?

  生:分數(shù)的分子分母同時除以相同的數(shù),分數(shù)的大小不變。(二名學生重復)師板書:或者除以

  師:你能根據(jù)剛才總結(jié)的規(guī)律舉一個例子嗎?

  讓三名學生舉出例子,師板書。并問:分子分母同時除以了幾?

  4、(1)師:根據(jù)分數(shù)的這一變化規(guī)律,你認為這個式子對嗎?為什么?(課件出示下列式子)

  43=4433??=169(強調(diào)“相同的數(shù)”)5 4 ???(強調(diào)“同時”)

  學生回答,并說明理由。

 。2)師:分數(shù)的分子、分母都乘以或除以相同的數(shù),分數(shù)的大小不變。這里“相同的數(shù)”是不是任何的數(shù)都可以呢?我們一起來看這樣一個分數(shù)。(課件出示式子:?0 40 343????)

  師:這個式子成立嗎?生:不成立,師:為什么生:因為0不能作除數(shù),師:0不能作除數(shù),所以這個式子是錯誤的。

  師:我再說一個式子,我不乘以0了,我除以0,這個式子成立嗎?(課件出示:4 3除以0。)

  生:不成立,因為在分數(shù)當中分母相當于除數(shù),除數(shù)不能為0。師:對,因為分數(shù)的分子、分母都乘0,則分數(shù)成為0 0,在分數(shù)里分母不能為0,所以分數(shù)的分子、分母不能同時乘0,又因為在除法里零不能作除數(shù),所以分數(shù)的分子、分母也不能同時除以0。所以這兩個式子都是不成立的?我們剛才總結(jié)的分數(shù)的分子分母同時乘或者除以相同的數(shù),要0除外。(師板書0除外)

  師:到現(xiàn)在為止這個規(guī)律我們就總結(jié)完了,那在這個規(guī)律里你覺得什么地方需要我們注意一下呢?生:同時和相同的數(shù)

  師:“同時”和“相同的數(shù)”(師將重點詞語打點),大家想得一樣嗎?這個就是我們今天這節(jié)課要學習的分數(shù)的基本性質(zhì)。(師板書課題:分數(shù)的基本性質(zhì))

  師:我相信懶羊羊?qū)W會了分數(shù)的基本性質(zhì),那就不會生氣了,那咱們同學們千萬不要犯它那樣的錯誤了。下面讓我們一起把分數(shù)的基本性質(zhì)邊讀邊記。生齊讀二遍。

  師:這個分數(shù)的基本性質(zhì)特別有用,我們可以根據(jù)分數(shù)的基本性質(zhì)把一個分數(shù)化成和它相等的另外一個分數(shù)。我們一起來看例2.三、運用規(guī)律、自學例題

  1、例2:把2/3和10/24化成分母是12而大小不變的分數(shù)。(課件出示)請一同學讀題。

  2、分組討論

  問:分子分母應怎樣變化?變化的依據(jù)是什么?

  3、讓生獨立完成,完成后和同位的同學說一說你是怎樣想的。

  每題請二名同學回答,(課件點擊出示答案)

  4、分數(shù)的基本性質(zhì)與商不變性質(zhì)

  師:能否用商不變性質(zhì)來說明分數(shù)的基本性質(zhì)?生:因為被除數(shù)÷除數(shù)=除數(shù)被除數(shù)

 。ǔ龜(shù)不能為0)

  所以被除數(shù)與除數(shù)同時擴大或縮小相同的倍數(shù),就相當于分子、分母同

  時擴大或縮小相同的倍數(shù)(0除外)。因此,商不變就相當于分數(shù)的大小不變。

  四、課堂運用(課件出示)

  1、判斷。(手勢表示,并說明理由。)

 。1)分數(shù)的分子、分母都乘以或除以相同的數(shù),分數(shù)的大小不變。()(2)把25 15的分子縮小5倍,分母也同時縮小5倍,分數(shù)的大小不變。()

 。3)4 3的分子乘以3,分母除以3,分數(shù)的大小不變。()

  (4)()

  3、找朋友游戲:

  拿出課前發(fā)的分數(shù)紙,并看清手中的分數(shù)。與2 1相等的,舉起自己的分數(shù)后請到右邊,與32相等的到左邊,與4 3相等的到講臺。

  五、拾撿碩果,拓展延伸

  1、看到同學們這么自信的回答,老師就知道今天大家的收獲不少,誰來說說這節(jié)課你都收獲了哪些東西?

  2、拓展延伸:

  村長運用什么規(guī)律來分餅的?如果沸羊羊要四塊,村長怎么分才公平呢?如果要五塊呢

  教學反思

  我講的這節(jié)課內(nèi)容是人教版五年級教材《分數(shù)的基本性質(zhì)》,本節(jié)課的主要目標是:使學生理解分數(shù)基本性質(zhì),并會用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。在課堂中,我充分利用學生的生活經(jīng)驗,設(shè)計生動有趣的故事《羊村村長分餅》,激發(fā)學生的學習興趣,展開課堂教學。

  1、教學的整個過程是學生親自驗證的過程,通過“驗證”學生感受了數(shù)學的嚴謹性。設(shè)計以“猜想--觀察--驗證--概括--深化--提高”的環(huán)節(jié),把知識的形成過程展現(xiàn)在學生的面前,使學生在掌握分數(shù)的基本性質(zhì)的同時,感知到數(shù)學知識的形成過程,在這一過程中注意滲透學生自學方法、解決問題的策略、體會數(shù)學知識與生活的緊密聯(lián)系,同時教給學生學會學習,學會思考的方法。在師生共同協(xié)作的過程中,達到課堂教學方法的最優(yōu)化,提高了課堂教學效益。

  2、在推導規(guī)律的過程中,抓住分數(shù)的分子、分母按怎樣的規(guī)律變化而分數(shù)大小不變這一點,通過動手操作、實踐,引導學生自己去發(fā)現(xiàn)、證實并歸納:分數(shù)的分子分母同時乘以或除以一個相同的數(shù)(零除外),分數(shù)的大小不變。在這關(guān)鍵處,教師又進一步發(fā)動全班討論,把問題引向縱深,這種教學模式既重視學生自主參與,相互合作的發(fā)揮,又有利于學生展現(xiàn)自己知識的建構(gòu)過程,不僅知其結(jié)果,而且更了解自己得出結(jié)果的過程和先決條件,促進知識與能力的同步發(fā)展。

  3、教學中取舍教材、取舍手段,著眼于學生的學習。教學中既運用了信息

  技術(shù),又把傳統(tǒng)教學手段有機地結(jié)合,讓資源充分、有效地發(fā)揮作用,優(yōu)化教師的教學手段,提高課堂教學效率。

分數(shù)的基本性質(zhì)的教案10

  第一課時

  一教學內(nèi)容

  分數(shù)的基本性質(zhì)

  教材第75頁的例1,第76頁”做一做“的第1題及第77頁練習十四的第1一5題。

  二教學目標

  1.通過教學,使學生歸納概括出分數(shù)的基本性質(zhì),并能理解分數(shù)基本性質(zhì),運用分數(shù)基本性質(zhì)解題。

  2.培養(yǎng)學生的遷移類推能力、抽象概括能力和觀察能力。

  3.讓學生體會到數(shù)學知識間的內(nèi)在聯(lián)系,感受學習數(shù)學知識的價值。

  三重點難點

  抽象概括出分數(shù)的基本性質(zhì)。

  四教具準備

  每人3張同樣的正方形或長方形紙片。

  五教學過程

  (一)導入

  1。直接口答下面各題的商,說說是怎樣想的?根據(jù)什么知識?

  120÷20=(12O×3)÷(30×3)=(120÷10)÷(30÷10)=

 。ǘ┙虒W實施

  1.教學教材第75頁的'例1。

  讓學生拿3張同樣的正方形或長方形紙片,分別對折一次、兩次、四次,平均分成2份、4份、8份,涂上顏色,分別用分數(shù)表示涂色部分。

  提示:你發(fā)現(xiàn)了什么?板書:==為什么相等?2.引導學生觀察它們的分子、分母各是按照什么規(guī)律變化的?學生以小組為單位討論,請代表發(fā)言。

  隨著學生匯報,老師板書。

 。◤淖笸矣^察)(從右往左觀蔡)

  3.提問:你還能舉出這樣的例子嗎?

  學生舉例,老師分別板書出來。

  4.觀察以上例子,你得出什么結(jié)論?(學生討論,匯報。)板書:分數(shù)的分子和分母同時乘或者除以相同的數(shù)(0除外),分數(shù)的大小不變。

  提問:為什么0要除外?(學生討論)

  小結(jié):分子和分母如果都乘上0,則分數(shù)成為,而分數(shù)的分母不能為O;又因為0不能作除數(shù),所以分數(shù)的分子和分母也不能同時除以O(shè)。

  5.提問:你能不能根據(jù)分數(shù)與除法的關(guān)系和商不變的性質(zhì)來說明分數(shù)的基本性質(zhì)?

  6.完成教材第76頁”做一做“的第1題。說一說自己是怎樣想的?學生根據(jù)分數(shù)的基本性質(zhì)思考并說明思路。

  7.完成教材第77頁練習十四的第1題。

  學生先獨立涂色,然后比較大小并說明理由。

  8.完成教材第77頁練習十四的第2題。學生獨立完成,說一說是怎樣比較的?可以把化成,也可以把化成,再比較。

  9.完成教材第77頁練習十四的第3題。

  學生兩人一組,由一人說一個分數(shù),另一個人說出一個相等的分數(shù)。

  10.完成教材第77頁練習十四的第4題。

  引導學生先應用分數(shù)的基本性質(zhì),判斷哪幾個分數(shù)是相等的,然后在直線上把這個點畫出來。

  老師啟發(fā)學生觀察,推算出每個分數(shù)中分子與分母可以同時除以幾,得到一個與原分數(shù)相等的分數(shù)。

  11.完成教材第77頁練習十四的第5題。

  進行口答練習。

 。ㄋ模┧季S訓練

  1.一個分數(shù)的分母不變,分子乘3,這個分數(shù)的大小有什么變化嗎?如果分子不變,分母除以5呢?

  2.在下面的括號里填上適當?shù)臄?shù)。

  9÷15===6÷()=()÷6

  (五)課堂小結(jié)

  通過本節(jié)的學習,知道了什么是分數(shù)的基本性質(zhì),并會應用分數(shù)的基本性質(zhì)解決一些簡單的數(shù)學問題。

分數(shù)的基本性質(zhì)的教案11

  內(nèi)容:P15、16例1、2 ,練習四第1-3題。

  目標:

  1.知識與技能:經(jīng)歷探索分數(shù)基本性質(zhì)的過程、理解分數(shù)的基本性質(zhì)。

  2.過程與方法:能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母或分子而大小不變的分數(shù)。

  3.情感、態(tài)度與價值觀:經(jīng)歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣。

  重點:正確理解與分析運用分數(shù)的基本性質(zhì)。

  過程:

  一、創(chuàng)設(shè)情境,導入新課。

  “大圣”分桃:

  話說大圣從王母娘娘處偷來的蟠桃分給眾猴。猴兒們好生歡喜。幾日之后,所剩不多了,只見大圣那兒留著一個特大的蟠 桃準備獨自享用。不料,它最寵愛的一只小猴還饞著要分享。大圣說:好吧,咱倆平分各一半。小猴小嘴一厥,不好不好,太少了!大圣把桃切大小一樣的四塊:“給,2塊!”“不好不好還是太小了”,小猴還是不滿意!罢骐y纏,還嫌少?”于是大圣把桃切成了大小一樣的8塊,扔給小猴4塊:“再嫌少,本大王就不給了”小猴一看,4塊,比1塊多了3塊!好極了!嘻嘻,謝大王!小猴歡天喜地地走了。同學們你們說,小猴真的比第一次多拿了嗎?

  二、師生共研、發(fā)現(xiàn)規(guī)律。

  師生共同揭秘“分桃”內(nèi)幕。

  人分桃的全過程,我們可將“齊天大圣”的分桃秘招公著如下:

  1÷2=1/2=2/4=4/8

  從上面這三個分數(shù)的相等關(guān)系,你發(fā)現(xiàn)了什么?

  從左往右看:

  1/2 = 1×2 / 2×2 = 2/4

  從右往左看:

  2/4 = 2÷2 / 4÷2 = 1/2

  1/2的分子、分母同乘2,分數(shù)大小不變;2/4的分子、分母同除以2,分數(shù)大小不變。

  觀察分子、分母的變化,同時歸納小結(jié)。

  學生試,驗證自己提出的觀點是否正確。

  小結(jié):

  分數(shù)的分子和分母同時乘上或者除以相同的數(shù)(零除外)分數(shù)的大小不變。

  三、數(shù)學小報,再次驗證。

  1.指導閱讀,并參照課本進行折紙(按小組活動)注意4張報紙要大小相同。

  2.將折得的小報中數(shù)學趣題版用陰影顯示出來。

  3.將四張的折疊結(jié)果重疊,得出數(shù)學趣題版面大小。

  4.針對式子進行口頭表述。

  四、理解性質(zhì)、簡單運用。

  例2的教學

 。1)出示例2:把3/4、15/24化成分母都是8而大小不變的分數(shù)。

  請同學們理清題意,然后進行轉(zhuǎn)化。

  (2)反饋。

 。3)質(zhì)疑

  讓學生通過討論,深化對分數(shù)大小不變的要求的理解。

  (4)議一議

  由于分數(shù)與除法的密切關(guān)系,所以分數(shù)的基本性質(zhì)與除法的商不變性質(zhì)是一致的。在實際應用中可以通用。

  五、練習鞏固、拓展提高。

  1.課堂活動

  2.提取第一題的`結(jié)果,進行深入思考:

  當我們應用分數(shù)的基本性質(zhì),把一個分數(shù)的分子和分母都乘或都除以一個非零的楨數(shù)時,大小是不是變了,分數(shù)單位呢?

  結(jié)論:大小不變,分數(shù)單位要變。

  六、全課總結(jié):

  這節(jié)課,我人們又發(fā)現(xiàn)了分數(shù)的什么奧秘?用自己的話說給同桌聽聽,還有什么要和老師及同學們說的?有問題嗎?

  七、作業(yè):

  練習四第1-3題。

分數(shù)的基本性質(zhì)的教案12

  教學目標:

  1、理解分數(shù)的基本性質(zhì)。

  2、初步掌握分數(shù)的基本性質(zhì)。

  3、培養(yǎng)學生觀察、比較、綜合、概括的能力和初步的邏輯推理能力。

  教學重點:理解與掌握分數(shù)的基本性質(zhì)。 教材分析:分數(shù)的基本性質(zhì)是在學習了商不變性質(zhì)及分數(shù)與除法的關(guān)系的基礎(chǔ)上進行教學的。它是今后學習約分和通分的依據(jù),是分數(shù)四則運算的重要基礎(chǔ)知識,是學生準確進行分數(shù)加減法計算的依據(jù)。

  設(shè)計意圖:通過復習商不變的性質(zhì)和分數(shù)與出發(fā)的關(guān)系,為學生探索新知提供了材料,作好了鋪墊,也為后面溝通分數(shù)基本性質(zhì)與商不變性質(zhì)打下了基礎(chǔ)。

  在新知的引入,我設(shè)計了讓學生動手操作的方法(折紙、涂色),調(diào)動學生的多種感觀充分感知數(shù)學事實,來引導學生觀察、思考,激發(fā)學生的求知欲,調(diào)動學生學習的積極性。

  通過先進的電教手段,如:投影儀,電腦等多媒體輔助教學。用形象的電腦圖象,以活潑的形式將抽象的數(shù)學概念轉(zhuǎn)變?yōu)閷W生易于理解概念,激發(fā)學生的學習興趣,結(jié)合一系列的具有針對性的提問,引導學生觀察思考,共同討論新知,自己歸納出分數(shù)變化的規(guī)律,即分于分母都乘以或除以相同的數(shù),分數(shù)和大小不變。 通過電腦出示的畫象的'逐步引入,使學生加深對分數(shù)基本性質(zhì)的理解,逐步建立清晰的概念。這樣讓學生參與概念形成的整個過程,有利于學生學習的主動性,發(fā)展學生的邏輯思維。

  在練習的設(shè)計上,力求緊扣重點,做到新穎、多樣、層次分明,難度由淺入深。

  第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3題是在第1、2題的基礎(chǔ)上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題通過游戲的形式,加深學生對分數(shù)基本性質(zhì)的認識,激發(fā)學生學習的興趣,活躍課堂氣氛。第5題,判斷練習,意在使學生加深對新知識的鞏固,糾正容易出錯的地方。第6題是思考題,是為了滿足學有余力的學生的需要,意在發(fā)展學生的智能。在聯(lián)系的過程中,也采用了電腦與投影及錄音機的有機結(jié)合有效地提高了課堂效率。

  教學過程: 復習舊知,導入新課 被除數(shù) 除數(shù)= 根據(jù)120 30=3 填數(shù) (120 3) (40 3)=( ) (120 ___) (40 10)=4 (復習商不變性質(zhì)) 驗證并結(jié)實課題 學生用準備好的兩張紙,進行動手操作。(感知 = ) 教師再演示,引導學生發(fā)現(xiàn) 、 、 、三個分數(shù)的大小相等。觀察什么在變,什么不變。把單位1平均分的分數(shù)和取的分數(shù),也就是分數(shù)的分子和分母發(fā)生了變化,而分數(shù)的大小不便,為什么分數(shù)的分子、分母在變,而分數(shù)的大小不變?它們的變化規(guī)律是什么?(引導學生帶著問題去思考) 新授,探索新知 啟發(fā)引導,揭示規(guī)律 (1) = = = =

  從左往右觀察,探索分數(shù)的分子、分母的變化規(guī)律,引導學生去思考。討論得出:分數(shù)的分子墳墓都乘以相同的數(shù),分數(shù)的大小不變。 ,分數(shù)的分子分母有什么變化? 呢? 它們的大小又怎樣呢?想一想,小姐出規(guī)律:分子、分母都除以相同的數(shù),分數(shù)的大小不變。 歸納性質(zhì) 誰能把上面的分數(shù)的分子分母都乘以或除以相同的數(shù)。兩句話合成一句話來說。分數(shù)的分子分母都乘以或除以相同的數(shù),分數(shù)的大小不變。 這里指的相同的數(shù)是指什么數(shù)? 指出:分母是0的分數(shù)是沒有意義的。假如分子、分母都乘以或都除以0,也是沒有意義的。所以0除外。相同的數(shù)可以是自然數(shù),也可以是小數(shù),也可以是分數(shù)。

  請全班同學將結(jié)語說完整,全班讀。 小結(jié):就是我們今天學習的內(nèi)容:分數(shù)的基本性質(zhì)?磿|(zhì)疑。 勾出關(guān)鍵詞語,幫助理解掌握。 (在新課的教學過程中,利用計算機,將各種圖形(也就是單位1)用主動的分割形式在大屏幕上清楚地進行演示,提高學生學習的積極性,更好地理解本課的學習內(nèi)容,有效地提高教學效率,使教學目標得以順利地實施。) 鞏固練習 在括號里填上適當?shù)臄?shù)使等式成立 幾組相等分數(shù)的天空練習

 。ㄓ糜嬎銠C將題目演示在大屏幕上,全般一起練習,再請個別學生說出答案,看答案是否和計算機演示的答案相同,全班同學來做小老師)

  3、請找我的好朋友練習。(以游戲的形式來進行)

  要求:(1)將幾張寫有分數(shù)的卡片發(fā)給幾位同學,請 他們看清楚上面的分數(shù)。

 。 2 )練習開始,請有卡片的同學注意觀察,和老師受傷卡片上分數(shù)大小相等的同學走出來,看誰最快最好。 (先將卡片上的分數(shù)用大屏幕顯示出來,便于全班同學練習。)

  4、判斷對錯 (1) = = ( ) (2) = = ( ) (3) = = ( ) (4) = = ( )

 。ㄟ@道題用計算機一題一題來演示,讓全班學生能用所學的知識來進行判斷,并能說出錯在哪里,可以請個別同學來回答,如果答對了計算機回發(fā)出以示獎勵的音樂;錯了會告訴同學錯了,再試一次。這道題的形式,充分運用了計算機的多功能作用,較生動活潑,引起學生的興趣,提高教學效果。)

  5、思考練習題 = 課堂總結(jié) 總結(jié)本課內(nèi)容,復述分數(shù)的基本性質(zhì)。

分數(shù)的基本性質(zhì)的教案13

  教學前的思考:

  一、一則Flash動畫故事引入:從前有座山,山里有座廟,廟里有個老和尚和一個小和尚,哦!不對,是三個小和尚。小和尚最喜歡吃老和尚烙的餅了。有一天,老和尚做了三塊一樣大小的餅,想給小和尚吃,還沒給,小和尚就叫開了。矮和尚說:“我要一塊!”高和尚說:“我要兩塊!”胖和尚說:“我不要多,只要四塊!”老和尚聽了二話沒說,立刻把一塊餅平均分成四塊,取其中的一塊給了矮和尚;把第二塊餅平均分成八塊,取其中的兩塊給了高和尚;把第三塊餅平均分成十六塊,取其中的四塊給了胖和尚,一一滿足了他們的要求。同學們,你知道哪個和尚吃的多嗎?---教師播放這則故事為學生提供“猜想”素材!安孪搿Ⅱ炞C”不但是科學研究的方法,也是一種很好的數(shù)學學習方法。由此我聯(lián)想到“性質(zhì)”的學習過程是否也可以讓學生在猜想、驗證中主動生成。

  二、學生動手操作,用事實說明,作好新知鋪墊:在揭題前,我設(shè)計了讓學生動手操作的方法,用三個同樣大小的圓折紙、涂色,來調(diào)動學生的多種感觀,充分感知數(shù)學事實,引導學生觀察、思考,激發(fā)學生的求知欲,活躍課堂氣氛,為“驗證”“性質(zhì)”作好鋪墊。

  三、得出結(jié)論后,滲透“形式與實質(zhì)”的辯證觀點:揭示“性質(zhì)”后,教師讓學生回顧故事內(nèi)容,驗證“猜想”到底哪個和尚吃的多,從形式上看矮和尚吃的多,但比較的事實說明吃的一樣多。教師再一次列舉生活中的事例說明“形式與實質(zhì)”的辯證觀點。

  教學設(shè)計:

  一 故事提供“猜想”素材:Flash動畫故事引入.(教師出示課件)

  師:今天老師很高興和同學們在一起共同學習,同學們心情怎樣?

  生:高興!

  師: 老師給大家?guī)砹艘粋禮物,請同學們仔細欣賞。(教師出示Flash動畫故事,學生欣賞。同時教師提出欣賞要求,)

  師:(欣賞后)同學們,你知道哪個和尚吃的多嗎?

  生1:胖和尚吃的多。

  生2:矮和尚吃的多。

  ……

  師:到底誰回答得對呢?上完這節(jié)課你們一定能得到準確的答案.(通過欣賞為學生提供素材,設(shè)懸念,留給學生獨立思考的空間)

  二 用事實“驗證”,完整性質(zhì)。

  1.實際操作列等式證實分數(shù)大小相等。

  師:請同學們以小組為單位,拿出三個大小相等的圓來,分別用陰影部分表示每個圓的

  (教師觀察,學生小組合作,有平均分的,有涂色的,小組成員配合默契)

  師:比較一下陰影部分的大小,結(jié)果怎樣?陰影部分相等,說明這三個分數(shù)怎樣?

  生:陰影部分的大小相等。

  師:陰影部分相等說明這三個分數(shù)怎樣?

  生:三個分數(shù)相等。

  (隨著學生的回答,老師將板書的三個分數(shù)用“=”連接。)

  2.觀察課件證實分數(shù)大小相等。

  師:(出示課件)老師有三個同樣大小的長方形,誰能用分數(shù)表示出黃色部分呢?

  師:這三個分數(shù)所表示的長度怎樣?這又說明了什么?

  (隨著學生回答老師在三個分數(shù)間用“=”連接。)

  3.初步概括分數(shù)基本性質(zhì).

  師:仔細觀察兩個等式,每個等式的三個分數(shù)什么變了?什么沒變?

  生:第一個等式中的三個分數(shù)分子、分母都變了,但分數(shù)的大小沒變。(師進行評價)

  師:同學們從左到右觀察第一個等式,想一下,這三個分數(shù)的分子、分母怎樣變化才保證了分數(shù)的大小不變的?

  (教師請同學們小組討論,學生各抒己見,爭論不休,氣氛活躍。)

  師:誰能用一句話把這個變化規(guī)律敘述出來呢?(師指名口述)

  生1:從左往右看,分數(shù)的分子、分母同時擴大了,也就是分子分母都乘了一個相同的數(shù),但三個分數(shù)的大小沒有變。(生2進行了補充)

  師:你們觀察的真仔細!請大家給點掌聲好嗎?

  (學生掌聲起,激情高長,課堂教學充滿活力。)

  師:(出示課件)請看大屏幕,老師是這樣敘述的.“分數(shù)的分子、分母都乘上同一個數(shù),分數(shù)大小不變”。

  師:同學們從左到右仔細觀察第二個等式,這三個分數(shù)的分子、分母發(fā)生了怎樣的變化,才保證了分數(shù)大小不變呢?誰能用一句話把這個變化規(guī)律敘述出來?

  (小組討論后,同法讓學生小結(jié)規(guī)律,并請同學給予評價,讓學生抒發(fā)自己的見解,體現(xiàn)課堂教學的民主化。然后教師在課件中補充“或除以”三個字。)

  4、完整分數(shù)基本性質(zhì):

  師:(出示課件)請同學們填空:

  (教師請一位會操作鼠標的同學在課件中填空)

  師:第3題( )里可以填多少個數(shù)?第4題呢?

  生:可以填無數(shù)個。

  師:( )里填任何數(shù)都行嗎?哪個數(shù)不行?(學生交流后老師指名回答)

  生:不能填零。

  師:為什么不能填零?

  生:分數(shù)的分母不能為零。

  (教師對學生的回答進行評價)

  師:所以我們總結(jié)的這條規(guī)律必須加上一個條件“零除外”

  (教師在課件中填上“零除外”三個紅色的字,以便引起學生的注意。)

  師:這個變化規(guī)律就是“分數(shù)的基本性質(zhì)”。(指名照課件主讀出性質(zhì))

  三 深入理解分數(shù)基本性質(zhì)

  1.學生自學,深入理解性質(zhì)。

  師:請同學們把書翻到108頁,自讀分數(shù)的基本性質(zhì)。

  師歸問:分數(shù)的基本性質(zhì)里哪幾個詞比較重要?為什么“都”和“相同”很重要?為什么“分數(shù)大小不變”也很重要?為什么“零除外”也很重要?

  生:因為都乘上或除以相同的數(shù)(0除外),分數(shù)的大小才不會變化。(同學評價)

  2.學生獨立完成做一做1。(完成后小組內(nèi)互相評價)

  3.找出與

  相等的分數(shù):

  (教師出示課件,請一位同學在課件中連線,教師進行評價)

  4.請同學們自學并完成例2、(教師巡視,個別進行輔導)

  ……

  四 照應Flash動畫故事,滲透“形式與實質(zhì)”的辯證觀點

  教師在黑板上出示自制的三個同樣大小的圓餅

  師:現(xiàn)在誰知道三個和尚,誰吃的多呢?(學生爭先恐后的想回答老師提出的問題)

  生:三個和沿吃的一樣多。

  師:同學們以后思考問題一定要多動腦筋,了解實質(zhì)后才能得出正確答案,我們不能從形式上看著事物去做出判斷。

  ……

  五 課堂小結(jié):這節(jié)課你有什么收獲?(學生板書課題)

  教學后的感悟:

  1.教學的整個過程是學生親自驗證的過程,通過“驗證”學生感受了數(shù)學的嚴謹性。設(shè)計以“猜想--判斷--觀察--驗證--概括--深化--提高”的環(huán)節(jié),把知識的形成過程展現(xiàn)在學生的面前,使學生在掌握分數(shù)的基本性質(zhì)的同時,感知到數(shù)學知識的形成過程,在這一過程中注意滲透學生自學方法、解決問題的策略、體會數(shù)學知識與生活的緊密聯(lián)系,同時教給學生學會學習,學會思考的方法。在師生共同協(xié)作的過程中,達到課堂教學方法的最優(yōu)化,提高了課堂教學效益。

  2.猜想素材有利于激發(fā)學生主動學習的興趣和熱情,有利于學生思維的碰撞,開啟了學生發(fā)自內(nèi)心的探索學習。

  3.教學中取舍教材、取舍手段,著眼于學生的學習。教學中既運用了信息技術(shù),又把傳統(tǒng)教學手段有機地結(jié)合,讓資源充分、有效地發(fā)揮作用,優(yōu)化教師的教學手段,提高課堂教學效率。

分數(shù)的基本性質(zhì)的教案14

  教學目標:

  1、經(jīng)歷探索分數(shù)的基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

  2、培養(yǎng)學生的觀察、比較、歸納、總結(jié)概括能力。

  3、經(jīng)歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣。

  教學設(shè)計

  一、創(chuàng)設(shè)情境

  師:(板書:2÷3)一個除法算式可以變戲法,你們信嗎?誰能變出一個和它大小一樣的除法算式?

  生:4÷6。

  師:還有嗎?

  生:10÷15。

  師:還有嗎?

  生:20÷30。

  ......

  師:簡直太多了!你們是根據(jù)什么變出這些除法算式?(板:商不變)你能結(jié)合這其中的一個算式說一說嗎?

  師:它還能變,把這個算式變成一個分數(shù)你會嗎?

  生:2/3。

  師:瞧,數(shù)學王國里有多神奇,這么簡單的一個除法算式,其中蘊藏著商不變的`性質(zhì),我們還發(fā)現(xiàn)了分數(shù)與除法的關(guān)系,那你們能猜出今天我們要探索數(shù)學王國里的什么知識嗎?(板書:分數(shù)的基本性質(zhì))

  二、自主探究,分層輔導

  師:誰能用分數(shù)來表示圖中的陰影部分?

  生:9/12或者3/4。

  師:從這兩個分數(shù)中,你能發(fā)現(xiàn)什么?

  師:一個分數(shù)是怎樣變成和它大小相等的另外一個分數(shù)的呢?我們再來變個魔術(shù)。

 。1)出示一張長方形白紙,邊演示邊說:“這是一張白紙,我們把它先對折,再涂一涂,看你能得到什么分數(shù),把它記錄在你的本上。比一比看誰變得最快。

 。2)學生動手操作、匯報(將學生的作品粘在黑板上)

  師:和他一樣的都折出1/2的舉起作品互相看看。

 。3)如果繼續(xù)對折下去,你還能得到哪些不同的分數(shù)呢?邊折邊記錄下來。(老師巡視提示:動作快的同學快去幫幫你周圍那些動作慢的同學吧!)

  師:你又得到了哪些分數(shù)?怎樣得到的?(將學生的作品繼續(xù)粘在黑板上)

  師:觀察比較這一組的分數(shù),你能發(fā)現(xiàn)什么呢?

  生:分數(shù)相等。

  (板書:1/2=2/4=4/8)

  師:你怎么知道的?

  生:看圖知道的。

  師:這一組分數(shù)的分子、分母是怎樣變化的?

  生:都乘相同的數(shù)。

  師:反過來看分子、分母又是怎樣變化的?

  生:都除以相同的數(shù)。

  師:你們能用概括的語言說一說分數(shù)大小不變的規(guī)律嗎?

  師:為什么0除外?

  師:分數(shù)大小不變的規(guī)律中要注意什么?

  三、深化理解,靈活運用

  1、媒體出示教材第44頁第1題。練習后進行交流,2、出示教材第44頁第2題,由學生直接進行搶答。

  3、討論教材第44頁第3題的第(2)小題。

 。ū绢}比較開放,教師要做好引導,可以先由學生獨立完成,然后四個人交流想法。)

  4、大比拚

  師:你們可真棒,怎樣也沒難住你們,再來一個挑戰(zhàn)!誰來向老師挑戰(zhàn),挑戰(zhàn)者出題,老師說出相等的分數(shù),其他同學做裁判。

  四、全課總結(jié)

  這節(jié)課你有什么收獲?(學生從知識、能力、情感方面進行自我收獲總結(jié))

分數(shù)的基本性質(zhì)的教案15

  分數(shù)基本性質(zhì):分數(shù)的分子和分母都乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

  根據(jù)分數(shù)的基本性質(zhì),我們能夠把任何一個分數(shù)變換成另一個分數(shù)單位的等值分數(shù)。也就是說,分數(shù)基本性質(zhì)解決了分數(shù)單位的換算問題。統(tǒng)一了分數(shù)單位,異分母的分數(shù)才能進行加減運算。

  例如,+=+

  =×2+

 。健粒2+1)

 。。

  在分數(shù)的運算中,把異分母分數(shù)變成同分母的分數(shù)的過程,叫通分;通分是把較小的分數(shù)單位變換為較大的分數(shù)單位。在分數(shù)的運算中,有時也需要把較大的分數(shù)單位變換成較小的分數(shù)單位,這個過程叫約分。

  例如,×=

  =

 。。

  通分和約分的理論根據(jù)都是分數(shù)的基本性質(zhì)。

  分數(shù)基本性質(zhì)還是分數(shù)集合分類的一個標準。根據(jù)分數(shù)基本性質(zhì),可以把分數(shù)集合中所有等值分數(shù)都歸為一類,于是分數(shù)集合就被分成無數(shù)個這樣的等值分數(shù)的類別。如,上述和屬于同一類,和屬于同一類。

  在分數(shù)集合的每一個等值分數(shù)的類別中,都有且只有一個最簡分數(shù)。所謂最簡分數(shù),就是它的分子和分母除1以外再也沒有其他的公因數(shù)了。如,上述、都分別是它們所在的等值分數(shù)類別中的最簡分數(shù)。

  在分數(shù)集合中,最簡分數(shù)就是每一個等值分數(shù)類別的代表。確定這一個代表的重要意義是,確保分數(shù)運算與自然數(shù)運算一樣,運算結(jié)果具有單值性(唯一性)。這就是為什么要對運算結(jié)果進行約分,直到最簡分數(shù)為止。

  小數(shù)單位0.1、0.01、......分別與分數(shù)單位、、......是等價的,小數(shù)是特殊的分數(shù)。小數(shù)與分數(shù)可以互相轉(zhuǎn)化。

  例如,把0.25化為分數(shù)。

  方法1:(根據(jù)小數(shù)的意義)

  0.25=0.01×25

 。健25

 。

 。。

  方法2:(把小數(shù)視為分母是1的分數(shù))

  0.25=

  =

 。

  =。

  方法1和方法2中,每一步都是可逆的,所以如果把化為小數(shù),也有與上述對應的兩種方法。此外,把分數(shù)化為小數(shù)還可以直接利用除法,即=1÷4=0.25。

  在上述兩種方法中,分數(shù)的基本性質(zhì)都發(fā)揮了作用。

  分數(shù)基本性質(zhì)與商不變規(guī)律,事實上是從不同的形式表示相同的規(guī)律。本質(zhì)相同而形式不同,主要是適應不同的情境。所以,從商不變規(guī)律的重要性亦可反觀分數(shù)基本性質(zhì)的重要性。

  遇到小數(shù)除法,根據(jù)商不變規(guī)律可以轉(zhuǎn)化為整數(shù)除法,從而以整數(shù)除法為基礎(chǔ)把把小數(shù)除法與整數(shù)除法統(tǒng)一起來。

  例如,2.4÷0.4=(24×0.1)÷(4×0.1)=24÷4=6;

  或者,2.4÷0.4=(2.4×100)÷(0.4×100)=24÷4=6.

  如果把2.4÷0.4寫成分數(shù)形式,也未嘗不可,不過將出現(xiàn)被稱為“繁分數(shù)”的分數(shù)形式。把繁分數(shù)化為簡單分數(shù),也必須根據(jù)分數(shù)的基本性質(zhì)。

  例如,=

 。

 。6.

  有了“商不變規(guī)律”,在算式的等值變形中可以避免出現(xiàn)繁分數(shù)的形式,所以繁分數(shù)的概念很早以前就已經(jīng)不出現(xiàn)在小數(shù)數(shù)學的教科書中了;即使出現(xiàn)了“繁分數(shù)”,我們就把它當作一般分數(shù)來對待,也不必專門為之增加一個新名稱。

  當溝通了分數(shù)、除法與比的本質(zhì)的聯(lián)系后,我們可以想到,其實比也有一個與分數(shù)基本性質(zhì)等價的基本性質(zhì)。即比的前項與后項都乘或除以相同的數(shù)(0除外),比值不變。

  根據(jù)比的這一基本性質(zhì),比可以進行等值變形。在比的實際應用中,如果不掌握比的等值變形,就會寸步難行。不過,比的等值變形不能局限于比的化簡。在筆者《分數(shù)認識的三次深化與發(fā)展》中,已經(jīng)說明把按比分配轉(zhuǎn)化為分數(shù)問題來解決的時候,事實上要把整數(shù)比轉(zhuǎn)化為分數(shù)比的形式,而且這些表示部分與整體關(guān)系的分數(shù)的總和還必須等于1(即部分之和等于整體)。

  下面再看兩個實例,進一步體會比的必要性。

  例1一種混凝土是由水泥、沙子和石子混合成的,其中水泥與沙子的比是1︰1.5,沙子與石子的比是1︰。這種混凝土中水泥、沙子和石子的比是多少?

  問題中兩個已知的比,分別表示混凝土中兩個成分的`比,而且這兩個比的基準不一致。解決這個問題的關(guān)鍵是統(tǒng)一比的基準。因為這兩個比中都含有沙子的成分,所以選擇沙子為統(tǒng)一的基準,就能把兩個比統(tǒng)一起來。

  解:水泥︰沙子=1︰1.5=10︰15=︰1;

  沙子︰石子=1︰。

  所以,水泥︰沙子︰石子=︰1︰=2︰3︰5。

  當某種混合物的成分多于兩種,并要表示它各種成分之間的倍比關(guān)系時,比的表示形式就得天獨厚志顯示出它的優(yōu)越性。

  例2(阿拉伯民間流傳的數(shù)學故事)有一位阿拉伯老人,生前養(yǎng)有11匹馬,他去世前立下遺囑:大兒子、二兒子、小兒子分別繼承遺產(chǎn)的、、。兒子們想來想去沒法分:他們所得的都不是整數(shù),即分別為、和,總不能把一匹馬割成幾塊來分吧?聰明的鄰居牽來了自己的1匹馬,對他們說:“你們看,現(xiàn)在有12匹馬了,老大得12匹的就是6匹,老二得12匹的就是3匹,老三得12匹的就是2匹,還剩一匹我照舊牽回家去!边@樣把分的問題解決了。

  學習比的知識,我們都會變得和阿拉伯兄弟的那個鄰居一樣聰明。這個知識就是比的等值變形。

  解:︰︰=(×12)︰(×12)︰(×12)

 。6︰3︰2,

  而且6+3+2=11。

  所以,老大、老二、老三分別分得的馬分別是6匹、3匹和2匹。

  這位阿拉伯鄰居一定是一名優(yōu)秀教師,他善于把上述抽象的演算過程直觀地表現(xiàn)出來。他牽來自己的一匹馬,湊成12匹馬,這個12恰是這三個分數(shù)分母的最小公倍數(shù),這個數(shù)也是把這三個分數(shù)的比化為整數(shù)比的關(guān)鍵所在。

  綜上,可以看到分數(shù)基本性質(zhì)的重要地位和作用:

 、笔前逊謹(shù)從一個分數(shù)單位換算為另一個分數(shù)單位的基礎(chǔ);

  ⒉是分數(shù)的通分與約分的根據(jù),也是一些算式等值變形的重要途徑之一;

  ⒊是分數(shù)集合被分成等值分數(shù)類別的分類標準,在每一個類別中都有且只有一個最簡分數(shù),使得分數(shù)運算的結(jié)果具有唯一性。

【分數(shù)的基本性質(zhì)的教案】相關(guān)文章:

《分數(shù)的基本性質(zhì)》教案07-20

分數(shù)的基本性質(zhì)教案08-06

分數(shù)的基本性質(zhì)教案11-09

《分數(shù)的基本性質(zhì)》教案06-18

分數(shù)的基本性質(zhì)的教案10-09

分數(shù)的基本性質(zhì)06-11

分數(shù)基本性質(zhì)說課稿09-06

分數(shù)的基本性質(zhì)說課稿08-20

分數(shù)的基本性質(zhì)的說課稿07-23