丁香花无码AV在线,欧美日韩国产色,年轻人手机在线免费视频,伊人成人在线,可以直接免费观看的av网站,日本三级香港三级人妇99,亚洲免费二区

二次根式教案

時間:2022-08-08 10:03:46 教案 我要投稿

精選二次根式教案3篇

  作為一名無私奉獻的老師,時常會需要準備好教案,教案是教學藍圖,可以有效提高教學效率。那么問題來了,教案應該怎么寫?下面是小編收集整理的二次根式教案3篇,希望能夠幫助到大家。

精選二次根式教案3篇

二次根式教案 篇1

  一、復習引入

  學生活動:請同學們完成下列各題:

  1.計算

 。1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

  二、探索新知

  如果把上面的x、y、z改寫成二次根式呢?以上的運算規(guī)律是否仍成立呢?仍成立.

  整式運算中的x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當然也可以代表二次根式,所以,整式中的運算規(guī)律也適用于二次根式.

  例1.計算:

 。1)(+)×(2)(4-3)÷2分析:剛才已經分析,二次根式仍然滿足整式的運算規(guī)律,所以直接可用整式的運算規(guī)律.

  解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計算

  (1)(+6)(3-)(2)(+)(-)

  分析:剛才已經分析,二次根式的多項式乘以多項式運算在乘法公式運算中仍然成立.

  解:(1)(+6)(3-)

  =3-()2+18-6=13-3(2)(+)(-)=()2-()2

  =10-7=3

  三、鞏固練習

  課本P20練習1、2.

  四、應用拓展

  例3.已知=2-,其中a、b是實數(shù),且a+b≠0,

  化簡+,并求值.

  分析:由于(+)(-)=1,因此對代數(shù)式的'化簡,可先將分母有理化,再通過解含有字母系數(shù)的一元一次方程得到x的值,代入化簡得結果即可?

二次根式教案 篇2

  教學目標

  課標要求:學生要學會學習、自主學習,要為學生終生學習打下堅實的基礎,根據教學大綱和新課標的要求,根據教材內容和學生的特點我確定了本節(jié)課的教學目標 1、了解二次根式的概念 2、了解二次根式的基本性質,經歷觀察、比較、總結二次根式的基本性質的過程,發(fā)展學生的歸納概括能力。 3、通過對二次根式的概念和性質的探究,提高數(shù)學探究能力和歸納表達能力。 4、學生經歷觀察、比較、總結和應用等數(shù)學活動,感受數(shù)學活動充滿了探索性與創(chuàng)造性,體驗發(fā)現(xiàn)的樂趣,并提高應用的意識。

  教學重點:二次根式的概念和基本性質

  教學難點:二次根式的基本性質的靈活運用

  教法和學法

  教學活動的本質是一種合作,一種交流。學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者與合作者,本節(jié)課主要采用自主學習,合作探究,引領提升的方式展開教學。依據學生的年齡特點和已有的知識基礎,本節(jié)課注重加強知識間的縱向聯(lián)系,,拓展學生探索的空間,體現(xiàn)由具體到抽象的認識過程。為了為后續(xù)學習打下堅實的基礎,例如在“銳角三角函數(shù)”一章中,會遇到很多實際問題,在解決實際問題的過程中,要遇到將二次根式化成最簡二次根式等,本課適當加強練習,讓學生養(yǎng)成聯(lián)系和發(fā)展的觀點學習數(shù)學的習慣。

  教學過程

  活動一:根據學生已有知識探究二次根式的概念 1.探究二次根式概念 由四個實際問題(三個幾何問題,一個物理問題)入手,設置問題情境,讓學生感受到研究二次根式來源于生活又服務于生活。 思考:用帶有根號的式子填空,看看寫出的結果有什么特點? (1)要做一個兩條直角邊的長分別為7cm和4cm的三角尺,斜邊的長應為 cm

  (2)面積為S的正方形的邊長為

  (3)要修建一個面積為6.28m2的圓形噴水池,它的半徑為m(∏取3.14)

  (4)一個物體從高處自由落下,落到地面所用的時間t(單位:s)與開始落下時的高度h(單位:m)滿足關系h=5t2.如果用含有h的式子表示t,則t= 學生發(fā)現(xiàn)所填結果都表示一個數(shù)的算術平方根,教師引導學生用一個式子表示這些有共同特點的式子。學生表示為,此時教師啟發(fā)學生回憶已學平方根的性質讓學生總結出a這一條件。在此基礎上總結出二次根式的概念。 2.例題評析 例1:哪些為二次根式? 練習:x取何值時下列各式有意義,通過4小題的訓練,讓學生體會二次根式概念的初步應用。加深對二次根式定義的理解,并注重新舊知識間的聯(lián)系,用轉化的.思想解決問題,總結出解題規(guī)律:求未知數(shù)的取值范圍即轉化為①被開方數(shù)大于等于0②分母不為0列不等式或不等式組解決問題。

  活動二:探究二次根式的性質1 1.探究(a)與0的關系 學生分類討論探究出:(a)是一個非負數(shù),此時歸納出二次根式的第一個性質:雙重非負性。培養(yǎng)學生的分類討論和概括能力。例2:,則變式:,

  活動三:探究二次根式的性質2 探究()2=a(a)由課本具體的正數(shù)和零入手來研究二次根式的第二個性質,首先讓學生通過探究活動感受這條結論,然后再從算術平方根的意義出發(fā),結合具體例子對這條結論進行分析,引導學生由具體到抽象,得出一般的結論,并發(fā)現(xiàn)開平方運算與平方運算的關系,培養(yǎng)學生由特殊到一般的思維方式,提高歸納、總結的能力。前兩題學生口述教師板書,后面的兩題由學生板演引導學生分析(2)(4)實質是積的乘方和分式的乘方 拓展:反之(a)如 為后面的化最簡二次根式(簡單的分母有理化)做好鋪墊。 例4:在實數(shù)范圍內分解因式

  活動四:探究二次根式的性質3 3.探究 在活動三的基礎上出示課本第4頁的探究: 引導學生比較活動三與活動四探究中兩組題目的不同之處,活動三中的題目是對非負數(shù)先進行開平方運算,再進行平方運算;而活動四中的題目正好相反,是先進行平方運算,再進行開平方運算。再次由特殊到一般的讓學生歸納出二次根式的又一個性質。培養(yǎng)學生觀察、對比的能力和意識。 此時引導學生談一談對()2和的聯(lián)系和區(qū)別 相同點:①都有平方和開平方運算 ②運算結果都是非負數(shù) ③僅當a時,()2= 不同點:①從形式和運算順序看:()2先開方后平方,先平方后開方 ②從a的取值范圍看:()2(a),(a為任意數(shù)) ③從運算結果看:()2=a(a),(a為任意數(shù)

二次根式教案 篇3

  1.請同學們回憶(≥0,b≥0)是如何得到的?

  2.學生觀察下面的例子,并計算:

  由學生總結上面兩個式的關系得:

  類似地,請每個同學再舉一個例子,然后由這些特殊的例子,得出:

 。ā0,b0)

  使學生回憶起二次根式乘法的運算方法的推導過程.

  類似地,請每個同學再舉一個例子,

  請學生們思考為什么b的取值范圍變小了?

  與學生一起寫清解題過程,提醒他們被開方式一定要開盡.

  對比二次根式的乘法推導出除法的運算方法

  增強學生的自信心,并從一開始就使他們參與到推導過程中來.

  對學生進一步強化被開方數(shù)的取值范圍,以及分母不能為零.

  強化學生的解題格式一定要標準.

  教學過程設計

  問題與情境師生行為設計意圖

  活動二自我檢測

  活動三挑戰(zhàn)逆向思維

  把反過來,就得到

 。ā0,b0)

  利用它就可以進行二次根式的化簡.

  例2化簡:

 。1)

 。2)(b≥0).

  解:(1)(2)練習2化簡:

 。1)(2)活動四談談你的收獲

  1.商的算術平方根的性質(注意公式成立的條件).

  2.會利用商的算術平方根的性質進行簡單的二次根式的`化簡.

  找四名學生上黑板板演,其余學生在練習本上計算,然后再找學生指出不足.

  二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?

  找學生口述解題過程,教師將過程寫在黑板上.

  請學生仿照例題自己解決這兩道小題,組長檢查本組的學習情況.

  請學生自己談收獲,并總結本節(jié)課的主要內容.

  為了更快地發(fā)現(xiàn)學生的錯誤之處,以便糾正.

  此處進行簡單處理是因為有二次根式的乘法公式的逆用作基礎理解并不難.

  讓學困生在自己做題時有一個參照.

  充分發(fā)揮組長的作用,盡可能在課堂上將問題解決.

【二次根式教案】相關文章:

二次根式教案四篇07-17

【精選】二次根式教案三篇08-05

精選二次根式教案4篇08-16

實用的二次根式教案三篇04-11

二次根式教案匯總7篇04-04

二次根式教案匯編六篇04-04

有關二次根式教案三篇02-03

二次根式教案范文10篇04-05

二次根式教案匯總九篇04-07