《乘法分配律》教學反思(通用25篇)
作為一名人民教師,課堂教學是重要的工作之一,借助教學反思我們可以拓展自己的教學方式,如何把教學反思做到重點突出呢?下面是小編收集整理的《乘法分配律》教學反思,僅供參考,希望能夠幫助到大家。
《乘法分配律》教學反思 篇1
乘法分配律是人教版四年級數學下冊的內容,是一節(jié)比較抽象的概念課,是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的。乘法分配律也是學習這幾個定律中的難點。因此,對于乘法分配律的教學,我沒有把重點放在數學語言的表達上,而是把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證。
所以,本課的教學目標,我定位在:
。1)從學生已有生活經驗出發(fā),通過觀察、類比、歸納、驗證、運用等方法深化和豐富對乘法分配律的認識。
。2)滲透“由特殊到一般,再由一般到特殊”的認識事物的方法,培養(yǎng)學生獨立自主、主動探索、發(fā)現問題,解決問題的能力,提高數學的應用意識。
本單元教材的一個鮮明特點是,不再僅僅給出一些數值計算的實例,讓學生通過計算,發(fā)現規(guī)律,而是結合學生熟悉的問題情境,幫助學生體會運算定律的現實背景。這樣便于學生依托已有的知識經驗,分析比較不同的解決問題的方法,引出運算定律。
教材提供了這樣一個主體圖:春季里,同學們開展植樹活動,一共有25個小組,每組里4人負責挖坑、種樹,2人負責抬水、澆樹。需要解決的問題是:一共有多少人參加植樹活動?學生會用兩種不同的方法分別列出算式,接著通過計算發(fā)現,兩個算式可以用“=”連接,即25×(4+2)=25×4+25×2。我將其首先呈現給學生,目的是結合學生熟悉的'問題情境,幫助學生體會運算定律的現實背景。
接著設計“懸念”,拋出四組題目,把學生引到“兩算式的結果相等”的情況中來。先請學生猜想,而后驗證,再請學生編題,讓每一個學生都不由自主地參與到研究中來。在編題過程中,很多學生都交出了正確的“答卷”,增強了他們學習的自信心和繼續(xù)研究的欲望。接著,請同學在生活中尋找驗證的方法,以四人小組為研究單位,學生的思維活動一下子活躍起來,紛紛探究其中的奧秘。小組討論的方式,更促使學生之間進行思維交流,激發(fā)學生希望獲得成功的動機。
通過實踐、討論,揭示了乘法分配律。再通過用自己喜歡的方式來表述乘法分配律加以內化。這樣做,學生學得積極、學得主動、學得快樂,自己動手編題、自己動腦探索,從數量關系變化的多次類比中悟出規(guī)律,“扶”得少,學生創(chuàng)造得多,學生學會的不僅僅是一條規(guī)律,更重要的是,學生學會了自主自動,學會了進行合作,學會了獨立思考,學會了像數學家一樣進行研究、發(fā)現!這對十歲左右的孩子來說,其激勵作用無疑是無比巨大的,而“愛思、多思、會思”的學習習慣,會讓孩子一生受益?v觀教學過程,學生學得輕松,學得主動。
我通過這節(jié)課的教學感受到:認真鉆研教材,深入挖掘教材中的寶貴資源,會使教材的內涵更有廣度和深度,也為培養(yǎng)和發(fā)展學生思維的靈活性,提供了更廣闊的空間。
《乘法分配律》教學反思 篇2
教學乘法分配律之后,發(fā)現學生的正確率很低,特別是對乘法結合律與乘法分配律極容易混淆。針對這種情況,我認為在教學中應該注意這些問題:
1、乘法分配律的教學既要注重它的外形結構特點,也要同時注重其內涵。
教學中通過解決買水果濟青高速公路全長約多少千米?這一問題,結合具體的生活情景,得到了(110+90)2=1102+902這一結果。這時我們往往比較注意了等式兩邊的外形結構特點,即兩數的和乘一個數=兩個積的和。缺乏從乘法意義角度的理解。所以這里我們不僅要從解題思路的角度理解兩個算式是相等的,還要從乘法的意義的角度理解,即左邊表示200個2,右邊也表示200個2,所以(110+90)2=1102+902
2、注意區(qū)分乘法結合律與乘法分配律的特點,多進行對比練習。
乘法結合律的特征是幾個數連乘,而乘法分配律特征是兩數的和乘一個數或兩個積的和。在練習中(40+4)25與(404)25這種題學生特別容易出現錯誤。為了學生更好地掌握可以多進行一些對比練習。如:進行題組對比15(84)和15(8+4);25125258和25125+258;練習中可以提問:每組算式有什么特征和區(qū)別?符合什么運算定律的特征?應用運算定律可以使計算簡便嗎?為什么要這樣算?
3、讓學生進行一題多解的練習,經歷解題策略多樣性的過程,優(yōu)化算法,加深學生對乘法結合律與乘法分配律的理解。
如:計算12588;10189你能用幾種方法?
12588 ①豎式計算; ②125811;③125(80+8);④125(100-12);⑤(100+25)88; ⑥(100+20+5)88等等。
10189 ①豎式計算;②(100+1)89;③101(80+9);101(100-11);101(90-1)等。對不同的解題方法,引導學生進行對比分析,什么時候用乘法結合律簡便,什么時候用乘法分配律簡便?明確利用乘法結合律與乘法分配律進行間算的條件是不一樣的`。乘法分配律適用于連乘的算式,而乘法分配律一般針對有兩種運算的算式。力爭達到用簡便算法進行計算成為學生的一種自主行為,并能根據題目的特點,靈活選擇適當的算法的目的。
4、多練,針對典型題目多次進行練習。
練習時注意練習量和練習時間的安排。剛開始可以天天練,過段時間以后可以過1-2天練習一次,再到1周練習一次。典型題型可選擇(40+4)25;(404)25;6325+6375;65103-653;5699+56;12588;48102;4899等。對于比較特殊的題目可間斷性練習,對優(yōu)生提出掌握的要求。如3698+72;6825+68+6874,3212525等。
《乘法分配律》教學反思 篇3
乘法分配律是在學生學習了加法交換律、結合律和乘法交換律、結合律的基礎上教學的。乘法分配律也是所有運算定律中變化最多的,因此它是學生最難理解與運用的定律。因此我在教學中讓學生在不斷的感悟、體驗中理解乘法分配律,從而概括出乘法分配律。
一、在對本課的教學目標上,我定位在:
。1)從學生已有生活經驗出發(fā),通過觀察、類比、歸納、驗證、運用等方法深化和豐富對乘法分配律的認識。
(2)滲透“由特殊到一般,再由一般到特殊”的認識事物的.方法,培養(yǎng)學生獨立自主、主動探索、發(fā)現問題,解決問題的能力,提高數學的應用意識。
二、在本課教學過程的設計上
我盡量想體現新課標的一些理念,注重從實際出發(fā),把數學知識和實際生活緊密聯系起來,讓學生在體驗中學到知識。順延之前學習乘法交換律和乘法結合律的情境舉例:利用植樹活動情境“一共有25個小組,每組里4人負責挖坑、種樹,2人負責抬水、澆水”。提出問題:“一共有多少名同學參加了這次植樹活動”。讓學生嘗試通過不同的方法得出:
(4 + 2)×254×25 + 2×25
= 6×25 = 100 + 50
= 150(元)= 150(元)
此時,讓學生觀察通過計算方法得到了相同的結果,這兩個算式可用“=”連接。使之讓學生從中感受了乘法分配律的模型。從而引出乘法分配律的概念:“兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變!庇米帜感问奖硎荆
。╝ + b)× c = a × c + b × c
三、在本節(jié)課的練習設計上,我力求有針對性、有坡度的知識延伸。
1、在完成課本36頁做一做時,對應這3道判斷題,
。1)、判斷56×(19+28)=56×19+28,讓學生感知到乘法分配律要分給括號里的每一個數,強調乘法分配律的“公平性”。
。2)、判斷32×(7×3)=32×7+32×3,讓學生注意到乘法結合律和乘法分配律的區(qū)別:通過對運算定律意義的描述,和算式的特點,提煉出最簡潔的區(qū)分方法:乘法結合律是連乘情況下的,乘法分配律除了乘法還有加法(后繼教學還會出現減法),容易使我們混淆的原因是,它們都是乘法的運算定律都有乘法出現,更關鍵是它們都出現了小括號。
。3)、判斷64×64+36×64,借助64個64和36個64,一共是64+36=100個64,讓學生理解乘法分配律逆向使用,在一些情況下,計算會變得十分簡便。
2、在完成較簡單的課本36頁做一做后,進行一些擴展型的練習:
通過(250—25)×4,讓學生感受到,乘法分配律除也可以兩個數的差與一個數相乘。對于分配之后,再把兩個積相減。同時復習強調我們熟悉的5道重要算式:5×2、25×4、125×8、125×4、25×8
由于本節(jié)課的知識運用的難度較大,學生對乘法分配律可以基本掌握,但是對于其萬般變化,還是有點力不從心,而該運算定律對學生后繼學習,尤其是小數和分數計算時有一定影響,所以還需要學生在本節(jié)課后進行深入的學習,教師也需要針對乘法分配律的每一種題型,結合學生的掌握情況進行更系統(tǒng)深入的講解。
《乘法分配律》教學反思 篇4
今年我“高升”了!從畢業(yè)開始,一直在一二年級的數學徘徊,今年“高升”到了四年級!得到消息后,先是興奮,再是忐忑。興奮的是終于能教大孩子了。忐忑的是能教了這些大孩子嗎?于是每天像是剛工作時一樣,每天手寫備課、拎著凳子去聽師傅的每一節(jié)課,不敢有絲毫怠慢。更忐忑的是接到通知,于老師要來聽課,其中有我!于是馬上請教我的師傅車老師,車老師認為《乘法分配律》是一節(jié)數學味很濃的課,而且是一節(jié)特別值得研究的課,于是決定講這節(jié)課。經過初步備課,我發(fā)現乘法分配律的運用屬于運算律中最有難度的部分,而且類型頗多,每一種都能讓學生琢磨半天,這讓我感覺這節(jié)課確實很有意思,也很有挑戰(zhàn)。
因為從來沒有執(zhí)教過高年級,我決定先“拜訪”名師。于是我上網搜視頻,設計。當我看到葛麗霞老師的視頻,我被驚艷了!課堂中的每個環(huán)節(jié)都讓我感覺眼前一亮,幾個精彩瞬間如“乘法分配律的探索過程、用字母表示法還有課的小結……”仍記憶猶新,于是我決定就模仿葛麗霞老師的這節(jié)課。視頻看了三遍,教案看了無數遍。于是就“拿來”了這節(jié)課。
可是經過于老師的指導,我發(fā)現,我模仿的是教案的話,每一句話后面深意,每一句話的目的,我真的明白了嗎?備課,備了教案,備了老師,卻把最重要的要素——學生,忘記了。沒有找到學生的認知起點,沒有探索到學生的易錯點,難點。后來,與我的'師傅車老師一起研究,對教案進行了重建,重建教案主要有以下幾個改進:
1、形意結合。
初次教學乘法分配律時,由于對教材的挖掘比較膚淺,在教學中,只是重視了對“兩個數的和與一個數相乘,要用括號里的每一個加數分別與這個數相乘,再把積相加”這句話的理解,學生對乘法分配律的印象完全停留在外形上,根本不知道為什么要用括號里的每個加數分別與括號外的數相乘,結果他們在應用時,只會按照總結出的規(guī)律生搬硬套,全班竟有一半的人出現了問題;當課堂進行到乘法分配律的逆運用時,很多學生更是不知道該從何入手,課堂效果特差。于是,重建教案中,在引導學生發(fā)現規(guī)律時,不僅注意了等式兩邊的“外形”結構特點,即“兩個數的和與一個數相乘,要用括號里的每一個加數分別與這個數相乘,再把積相加”,而且重視了對規(guī)律的本質--乘法意義的理解。借此機會我再次打開教學參考,進行了細細地研讀!皩12×105簡算時,要將105想成100與5的和。先求100個12是多少,再求5個12是多少,合起來就是105個12是多少!笔茄剑谝龑W生發(fā)現規(guī)律時,我只注意了等式兩邊的“外形”結構特點,卻缺乏對規(guī)律的本質--乘法意義的理解。
2、講解到位,注重知識點的前后聯系
初建教案時,最后環(huán)節(jié)設計了展示二年級兩位數乘一位數,以及三年級兩位數乘兩位數的電子課本,其目的是將前后的知識點加以聯系。我的課堂設計也延續(xù)了這一亮點,可是我只是自顧自的講解了一番,孩子根本不知所云!
起初我的感覺是這一環(huán)節(jié)主要是考慮優(yōu)等生的提升,所以在講解時也只是匆匆了事!但是,課后我覺得應該讓孩子明白回顧這一環(huán)節(jié)的內容,在出示乘法情境圖的時候可以采用課件展示的方式,出示23×(10+2)=23×10+23×2這一算式。為了讓學生更好地理解以前運用過乘法分配律,還可出示長方形的周長公式(a+b)×2=a×2+b×2,唯有此,才能夠將前后知識點聯系起來,水到渠成。
新航程的號角已經吹響,我想我應該以此次講課為契機,適應數學教學的變化,向名師課堂學習,從“拿來”到“思考”,關注學生,讓數學回歸本質,盡自己最大的努力讓每一個孩子學到有價值的數學!
《乘法分配律》教學反思 篇5
學生對于乘法分配律和結合律極容易混淆,而且符號容易抄錯。針對這些情況,在教學中應該注意什么呢?
1、乘法分配律的教學既要注重它的外形結構特點,也要同時注重其內涵。
教學時我們往往注重等式兩邊的外形特點,即a×(b+c)=a×b+a×c缺乏從乘法意義角度的理解。這時教師可提出為什么兩個算式是相等的?這里不僅從解題的角度理解,如(2+7)×3=+2×3+7×3是相等的,還有從乘法的意義的角度理解,即左邊表示出3個9,右邊也表示出3個9,所以(2+7)×3=2×3+7×3
2、注意區(qū)分乘法結合律與乘法分配律的特點,多進行對比練習。
乘法結合律的特征是幾個數連乘,而乘法分配律特征是兩個數的和乘以一個數或兩個積的和。在練習題中(40+4)×25與(40×4)×25這種題學生特別容易出錯。為了更好地掌握,可多進行一些對比練習,如進行題組對比25×(8+4)和25×8×4;25×125×25×4和25×125+25×8;每組算式有什么特征和區(qū)別?符合什么運算定律?應用什么運算定律可以使計算簡便?為什么要這樣算?
3、讓學生進行一題多解的練習,加深對乘法結合律和乘法分配律的理解
如:125×88;101×89你能有幾種方法?125×88①豎式計算②125×8×11③125×(80+8)④(100+25)×88等等。101×89①豎式計算②(100+1)×89③101×(100-1)④101×(80+9)⑤101×(90-1)等。對于不同解法,引導學生進行對比分析,什么時候用乘法結合律簡便?什么時候用乘法分配律簡便?力爭達到"用簡便計算法進行計算"成為學生一種自主行為,并能根據題目的特色靈活選擇適當的算法的.目的。
4、多練
針對題目多次練習。練習時注意練習量和時間的安排。剛開始可以天天練習,過段時間以后可以一兩天練習一次,再到一周練習一次,典型題型課選擇(40+4)x25;(40x4)x25;63x25+63x75;65x103-65x3;56x99+66;125x8;48x102;48x99等。+
對于比較特殊的題目可以間斷性練習,對優(yōu)生提出掌握的要求,如:36x98+72;68x25+68+68x74;32x125x25等。
《乘法分配律》教學反思 篇6
乘法分配律是第三章的教學難點也是重點。這節(jié)課的設計。我是從學生的生活問題入手,利用與生活密切相關的情境圖植樹問題展開。這節(jié)課我力圖將教學生學會知識,變?yōu)橹笇W生會學知識。通過讓學生經歷了“觀察、初步發(fā)現、舉例驗證、再觀察、發(fā)現規(guī)律、概括歸納”這樣一個知識形成的過程;仡櫿麄教學過程,這節(jié)課的亮點主要體現在以下幾個方面:
在教學中,通過這次植樹情境讓學生感到數學就是從身邊的生活中來的,激發(fā)學生學習的熱情!耙还灿卸嗌倜麑W生參加這次植樹活動?”。讓學生根據提供的條件,用不同的方法解決,從而發(fā)現(4+2)×25=4×25+2×25這個等式。然后請學生觀察,這個等式兩邊的運算順序,使學生初步感知“乘法分配律”。再讓學生“觀察這個等式左右兩邊的不同之處”,再次感知“乘法分配律”。同時利用情景,讓學生充分的感知“乘法分配律”,為后來“乘法分配律”的探究提供了有力的保障。
重點是理解算式的意義,我們在引導中進行總結(4+2)個25的和也可以寫為25分別乘以4和2,再把他們的積相加的形式,接著讓同學們再次深化理解自己嘗試寫出幾個類似的算式,由于是網上教學,沒辦法直接展示學生的'算式,于是我在大屏幕上寫出幾個算式,讓同學們來說一說他們的觀察到的算式,從而總結出乘法分配律的規(guī)律。進而通過計算,發(fā)現運用乘法分配律可以使得計算更加簡便。
這節(jié)課的不足:
當我們運用乘法分配律進行練習的時候,我發(fā)現學生在做題時會錯誤的把中間的+抄寫成×,導致錯誤。這說明學生沒有完全對乘法結合律和乘法分配律進行區(qū)分,還需要再次進行強調。
這節(jié)課上對學生的主題地位有所忽視。雖然是網課教學,沒辦法與學生共同在一間教室,沒辦法與學生面對面教學,但是顧慮到時間的限制與學生的互動,留給學生的思考的時間不夠充分,接下來在教學設計時可以減少授課容量,留給學生充分的思考時間。
《乘法分配律》教學反思 篇7
本節(jié)課主要讓學生充分感知并歸納乘法分配律,理解其意義。教學中,我從解決實際問題(買衣服)引入,通過交流兩種解法,把兩個算式寫成一個等式,并找出它們的聯系。讓學生初步感知乘法分配律的基礎上再讓學生舉出幾組類似的算式,通過計算得出等式。在充分感知的基礎上引導學生比較這幾組等式,發(fā)現有什么規(guī)律?這里我化了一些時間,我發(fā)現學生在用語言文字敘述方面有些困難,新教材上也沒有要求,因此,只要學生意思說到即可,后來,我提了這樣一個問題,你能用自己喜歡的方式來表示你發(fā)現的規(guī)律嗎?學生立即活躍起來,紛紛用自己喜歡的方式來闡明自己發(fā)現的規(guī)律:有用字母的,有用符號的,大部分學生會說,沒問題。對于應用這一乘法分配律進行后面的練習還可以。如:書上第55頁的第5題,學生都想到用簡便方法去列式計算。整節(jié)課,學生還是學的比較輕松的。
關于乘法分配律早在上學期和本冊教材的前幾個單元的練習題中就有所滲透,雖然在當時沒有揭示,但學生已經從乘法的意義角度初步進行了感知,以及初步體會了它可以使計算簡便。今天的教學就建立在這樣的基礎之上,上午第一節(jié)課我在自己班上,后來第二節(jié)課去聽了一根木頭老師的課,現在進行對比,談一談自己的感受:
首先,值得向一根木頭老師學習的是,學生的預習工作很到位。課前,學生就已經解決了“想想做做”第3、4題,學生通過解決第三題用兩種方法求長方形的周長,既鞏固了舊知,而且將原來的認識提升了,從解決實際問題的角度進一步感受了乘法分配律。而第4題通過計算比較,突現了乘法分配律可以使計算簡便,體現了應用價值。我在課前沒有安排這樣的預習,因此課上的時間比較倉促。
其次,我在學生解決完例題的問題后,還讓學生提了減法的問題,這樣做的目的`是讓學生初步感受對于(a—b)×c=a×b—a×c這種類型的題也同樣適合,既擴展了學生的知識面,同時又為明天學習簡便運算鋪墊。
最后,我覺得在指導學生在觀察比較65×5+45×5和(65+45)×5的聯系和區(qū)別時,可以指導學生從數和運算符號兩個角度觀察,學生得出結論后,其實已經感知到了算式的特點,然后讓學生用自己的方式創(chuàng)造相同類型的等式,可以是數、字母、圖形的等,值得欣慰的是學生能用各種方式正確表示出來,然后再揭示數學語言,學生的認知產生飛躍。
不足的是,學生很難用自己的語言表達乘法分配律的含義,小組交流時,有些同寫還是充當旁觀者的角色,有待于教師科學地引導。
《乘法分配律》教學反思 篇8
多年來,我一直從事小學數學教學工作,每當教授學生學習運用乘法分配律進行簡便計算時,心里多少都有些發(fā)怵,因為這是一節(jié)比較抽象的概念課,學生極易混淆概念。這節(jié)課是在學生學習了加法交換律、結合律和乘法交換律、結合律的基礎上教學的。乘法分配律是學習這幾個定律中的難點,它的教學重點是讓學生感知乘法分配律,知道什么是乘法分配律,難點是理解乘法分配律的意義,并會用乘法分配律進行一些簡便運算。于是,對于乘法分配律的教學,我沒有把重點放在數學語言的表達上,而是把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行仔細觀察,比較和歸納,大膽提出自己的猜想并且舉例進行驗證。
乘法分配律是四年級下冊的教學內容,對本課的教學目標我定位在:
1、從學生已有的生活經驗出發(fā),通過口算、觀察、類比,歸納、驗證、運用等方法深化和豐富對乘法分配律的認識。
2、在教學中滲透“由特殊到一般,再由一般到特殊”的認識事物的方法,培養(yǎng)學生獨立自主、主動探索、發(fā)現問題、解決問題的能力,提高學生對數學的應用意識。
新教材的一個鮮明特點就是,不再僅僅給出一些數值計算的實例,讓學生通過傳統(tǒng)的計算方法,發(fā)現規(guī)律,而是給學生出示一些熟悉的問題情境,讓學生從實際生活出發(fā),體會運算定律的現實生活背景,這樣便于學生依托已有的知識經驗,分析比較不同的解決問題的方法,從而引出運算定律。
本節(jié)課也一樣,教材提供了這樣一個主題圖:工人叔叔正在給墻面貼瓷磚呢,橫著一排貼9塊瓷磚,豎著有兩種顏色,其中黃色的貼4排,藍色的貼6排,需要解決的問題是:一共需要貼多少塊瓷磚?學生獨立計算,分別用兩種不同的方法計算:
。1)4×9+6×9=90(塊);
(2)(4+6)×9=90(塊)。
接著我讓學生敘述等號左邊和右邊分別表示什么意思(根據情境)。目的是讓學生用等值變形對算式的理解。接著讓學生觀察兩個算式,讓學生說出:這兩個算是可以用“=”連接,即:(4+6)×9=4×9+6×9。學生繼續(xù)觀察等于號左邊和右邊的算式的特點,目的是結合學生熟悉的問題情境,為后面的學習奠定基礎,幫助學生體會運算定律的現實背景。接著設計“懸念”,出示四組題目,把學生引到“兩個算式的結果相等”的情況中來。先讓學生猜想,然后驗證,再讓學生仿照上式編題,讓每一個學生都不由自主的參與到研究中來。在編題的過程中,大多學生都編得正確,于是學生在參與探究中體驗到了成就感,從而增強了他們學習的自信心和繼續(xù)探究的欲望。接著,請同學們在生活中尋找驗證的方法,分小組交流討論,學生的思維活動一下活躍起來了,紛紛探究其中的奧秘。
用小組討論的方式,更促使學生之間進行思維交流,激發(fā)學生希望獲得的成功的機會。通過實踐、討論,揭示了乘法分配律。再通過用自己喜歡的方式來表述乘法分配律加以內化。這樣做,學生學得積極、學得主動、學得快樂。自己動手編題、自己動腦探索,從數量關系變化的多次類比中悟出規(guī)律。
“給的現成”的少,學生“創(chuàng)造”的就多,這樣學生學會的不僅僅是一條規(guī)律,更重要的是,學生學會了自主、主動參與,學會了進行合作、獨立思考、研究、發(fā)現等,像一個數學家一樣(這是我的鼓勵語言)!這對于一個十來歲的孩子來說,起到的激勵作用是無比巨大的。而愛思考、多思考、會思考的學習習慣,會讓孩子一生受益?v觀整個教學過程,學生學得輕松,學得主動。
通過這節(jié)課的教學,我感受到:認真鉆研教材,深入挖掘教材中的寶貴資源,會使教材的內涵更有深度、廣度,也為培養(yǎng)和發(fā)展學生思維的靈活性,提供了更加廣闊的空間。本節(jié)課的教學較好的貫徹了新課程標準的理念,具體體現在以下幾點:
一、主動探究、親身經歷和體驗
學生的學習過程應該是學習文本批判、質疑和重新發(fā)現的'過程,是在具體情境中整個身心投入到學習活動,去經歷和體驗知識形成的過程,也是身心多方面需要的實現和發(fā)展的過程。本節(jié)的教學,我從主題圖入手,引出(4+6)×9=4×9+6×9。設計的目的是從解決這個問題的兩種算法中,得到乘法分配律的一個實例。接下來,出示四組題目,把學生引到“兩算式的結果相等”的情況中來。然后讓學生通過驗證方法的可行性,再讓學生舉例驗證方法的普遍性,最后由學生通過觀察、討論、發(fā)現、驗證、歸納出乘法分配律。整個過程中,我不是把規(guī)律直接呈現給學生,而是讓學生通過自主探索去感悟發(fā)現,使主體性得到了充分發(fā)揮。在這個過程中,學生經歷了一次嚴密的科學發(fā)現過程:觀察――猜想――驗證――結論,聯系生活,解決問題。為學生的可持續(xù)學習奠定了基礎。
二、多向互動,注重合作交流
在教學過程中,學生的認知水平、思維方式、智力水平、活動能力都是不一樣的。因此,為了使不同層次的學生都能在學習中得到發(fā)展,我在本節(jié)課的教學中通過師生多向互動,特別是通過學生與學生之間的相互啟發(fā)與補充,來培養(yǎng)他們的合作意識,實現對“乘法分配律”這一定律的主動構建過程,使學生個人的方法化為共同的學習成果,共同體驗成功的喜悅,生命活力得到發(fā)展的過程。
總之,在本節(jié)課中,雖然新的教學理念有所體現,但對于個別學生的參與積極性還沒有充分調動起來,同學們雖然很投入,都似乎掌握了運算定律的運用,但在課堂練習時還是發(fā)現了一些問題,個別學生仍然出現了概念混淆,如:學生在計算形如a×(b+c)時,就把等于號右邊的算式錯誤的寫成:a×b+c,期間我還提醒大家注意,但實際運用中,很多同學還是忘記用括號里的兩個加數a和b分別去乘括號外的乘數c。其實這個問題,也是我上課之前所發(fā)怵的原因,現在看來,對于這一問題,還必須在今后的練習過程中進一步加強理解、運用的訓練,更有待我在今后的教學中不斷地探索改進更好的教學方法,以求進一步提升課堂教學效率。
《乘法分配律》教學反思 篇9
教材分析:
乘法分配律是北師大版小學數學四年級上冊第三單元最后一節(jié)的教學內容。本課是在學生已經學習掌握了乘法交換律、結合律,并能初步應用這些定律進行一些簡便計算的基礎上進行學習的。乘法分配律是本單元教學的一個重點,也是本單元內容的難點,教材是按照發(fā)現問題--提出假設--舉例驗證--歸納結論等層次進行的。然而乘法分配律又不是單一的乘法運算,還涉及到加法的運算,是學生學習的難點。因此本節(jié)課不僅使學生學會什么是乘法分配律,更要讓學生經歷探索規(guī)律的過程,進而培養(yǎng)學生的分析、推理、抽象、概括的思維能力。
1.上課一開始,我創(chuàng)造性地使用教材,創(chuàng)設了訂校服的教學情境,使學生解決非常熟悉的生活問題。
2.在此基礎上,我并沒有急于讓學生說出規(guī)律,而是繼續(xù)為學生提供具有挑戰(zhàn)性的研究機會:“請你再舉出一些符合自己心中規(guī)律的等式”,繼續(xù)讓學生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點,驗證其內在的規(guī)律,從而概括出乘法分配律。
3.本節(jié)課有一定的亮點,但其中出現了不少問題:學生參與的積極性沒有預想中那么高?赡芘c我相對缺乏激勵性語言有關。也有可能今天的`題材學生不太感興趣。
4.以后注意,學生不感興趣的材料,教師應該想辦法使呈現的這個材料變得能讓學生感興趣。
教學反思:
乘法分配律是第三單元的一個難點。在理解、掌握和運用上都有一定難度。因此如何上好這一課,讓學生真正地理解乘法分配律,并在理解的基礎上運用好它?我覺得要注重形式上的認識,更要注重意義上的理解。因為單從形式上去記住乘法分配律是有局限性的,以后在運用乘法分配律的時候,遇到一些變式如:99×24+24會變得難以解決。注重意義的理解,能讓學生從更高的層面上去理解乘法分配律,那么將來無論形式上怎么變化,學生都能輕松運用乘法分配律。
北師大版的教材注重學生的探索活動,在探索中讓學生自己去發(fā)現的規(guī)律,才能讓他們真正地理解。本課是“探索與發(fā)現”的第三節(jié)課了,學生已經有了一定的探索能力。因此本課的設計完全圍繞著學生的自主活動在進行。
總體上我的教學思路是由具體——抽象——具體。在學生已有的知識經驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在學習中大膽放手,把學生放在主動探索知識規(guī)律的主體位置上,讓學生能自由地利用自己的知識經驗、思維方式去發(fā)現規(guī)律,驗證規(guī)律,表示規(guī)律,歸納規(guī)律,應用規(guī)律。
在教學過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內容時,學生難以完整地總結出乘法分配律,另外還有部分學困生對乘法分配律不太理解,運用時問題較多等。
《乘法分配律》教學反思 篇10
曾經真的以為自己是一個很負責任的人:我愛我的學生,我愛我的數學教學,甚至可以為了我的學生與數學教學,放棄我個人的休息時間,為的只是我愛的學生能愛上我教的數學,能把數學學得很出色。然而為什么總是事與愿違,成效“背叛”了設想,作業(yè)“背叛”了課堂?一切顯得那么捉襟見肘,“徒勞無功”成了我這學期最大的感受,到底問題出在哪里呢?當我回想起教學中一點一滴的瑣事,老師們交流時的經驗之談,再重新翻閱起一些理論書刊時,我似乎意識到自己其實早已經“背叛”了數學教學。
“哦,簡單,簡單!”黃玄昶又樂滋滋地高高舉起他的手,果然不出我所料,他的.回答又正中我的下懷,這不正是我所期望的答案嗎?說實話,開公開課我就喜歡像他這樣的學生,積極舉手發(fā)言,而且一步一步被我“引進”來,突出所謂的教學重點,攻克預設的教學難點,最后解決相應的問題,“看上去很美”,真的,經過我的“引導”,他能“自主探索”,尋求規(guī)律,最后消除疑問,這不是一件看上去很“完美”的事嗎?
可是……“怎么又錯了!”我真是納悶,上課如此“高效”的人,怎么作業(yè)就這么慘不忍睹?題目稍一拐彎,就轉不過來了,曾經我把他定論為思維的靈活性不夠,然而上完這堂《利用乘法分配律進行簡便運算》后,經過反思與請教,我終于發(fā)現我錯了。
《乘法分配律》教學反思 篇11
乘法分配律的教學是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的。乘法分配律也是學習這幾個定律中的難點。故而,對于乘法分配律的教學,我沒有把重點放在數學語言的表達上,而是把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證……
現在的課程改革重點之一就是如何促進學生學習方式的變革,讓他們可以用自己的眼睛去觀察,用自己的腦子去思考,用自己的語言去表述,成為一個獨特的個體。并強調從學生已有的生活經驗出發(fā),讓學生親身經歷將實際問題抽象成數學模型并進行解釋和應用的過程,進而使學生獲得對數學理解的同時,在思維能力方面得到進步和發(fā)展。本著對新課標的學習和認識,我對“乘法分配律”這一堂課在實踐理念方面作如下的探索。
1.在對本節(jié)課的教學目標上,我定位在:
(1)通過學生比賽列式計算解決情景問題后,觀察、比較、分析理解乘法分配律的含義,教師引導學生概括出乘法分配律的內容。
(2)初步感受乘法分配律能使一些計算簡便。
。3)培養(yǎng)學生分析、推理、概括的思維能力。
2.在本節(jié)課的教學過程的設計上,我盡量想體現新課標的一些理念。注重從學生的實際出發(fā),把數學知識和實際生活緊密聯系起來,讓學生在體驗中學到知識。在課的開始,我通過口頭講故事創(chuàng)設情境“森林超市”,“招聘廣告”,設置懸念,激發(fā)學生的學習欲望和學生學習數學的興趣:你們去過森林超市嗎?想不想去看一看?小狗開了一家森林超市,想通過招聘廣告應聘一名營業(yè)員呢!我們一起來看一看。小兔、小豬看到廣告后,前來應聘,小熊決定進行考試過三關,擇優(yōu)錄取。小狗還想邀請同學們一起參加這個活動,你們愿意嗎?學生已迫不及待地說想。
接著我分別讓班上的一組、二組分別和三組、四組扮演小豬和小兔進行解題比賽,學生學生們積極性極高并爭先恐后地做題,同時讓學生說說你是怎么做的?學生嘗試通過不同的方法先后得出:
(1)50×8+125×8 =400+1000=1400(元),(50+125)×8=175×8=1400(元);
。2):(55+45)×5 =100 ×5 =500(元),55×5+45×5=275+225=500(元);
。3)15×4+3×4 =60+12=72(元),(15+3)×4=18×4=72(元)。
此時教師讓學生觀察通過不同的計算方法得到了相同的結果,這兩個算式用“=”連接。通過不同計算得到相同的結果,讓學生從中初步感受了乘法分配律的模型。為了讓學生切實體會生活中確實有乘法分配律的知識。在此我又設置了一個問題:上面兩題的結果,左邊和右邊的`式子也有相同的形式,這里是否存在著規(guī)律?讓學生帶著一點疑惑,又急著想證明的愿望繼續(xù)探究。這時學生心中已具有了乘法分配律的模型。當學生有了上面的真實感受,讓學生列舉出類似的等式已水到渠成。讓學生觀察剛才得到的一系列等式,小組討論:從這些等式中你發(fā)現了什么規(guī)律?并要求同桌嘗試合作學習進行一人任意找三個數寫出等號左邊的式子讓另一個寫出等號右邊的式子,幾題過后再交換寫式子,讓他們親自感受乘法分配律,從而概括出乘法分配律。
3、在本課的練習設計上,我力求有針對性,有坡度,同時也注意知識的延伸。針對平時學生練習中的錯誤,在判斷題中我安排了(25×7)×4=25×4+7×4,讓學生通過爭論明白當(25×7)×4時用乘法結合律簡算;當(25+7)×4時用乘法分配律簡算。在填空題目中,我設計了
、伲10+7)×6=()×6 +()×6 ;
、8×(125+9)=8×()+8×();
③7×48+7×52=()×(+)
通過練習讓學生更深入地理解乘法分配律的概念,也為后面利用乘法分配律進行簡算打下伏筆。
總之,在本堂課中新的教學理念有所體現,但在具體的操作中還缺乏成熟的思考,對學生的積極性沒有充分調動起來,而且在生活情境的創(chuàng)設中對情境的趣味性、興趣性、情境性不能很好的體現,情景創(chuàng)設題目有點多,需減少一題,留給學生思考的時間還不夠。這一系列問題有待我在今后的教學過程中不斷的改進和提高。最后,衷心地感謝各位領導的指導并提出建議!
《乘法分配律》教學反思 篇12
《乘法分配律》是一節(jié)比較抽象的概念課,是學生們學習了加法交換律和結合律,以及乘法的交換律和結合律的基礎上進行教學的。本節(jié)課的教學重點是乘法分配律的特點和應用。開始導入我是利用小學教學熱身賽展開的教學。9×37+9×63和9×(37+63)。左右兩排學生做不同的題,讓學生認識到這兩道題難易程度的不同,用的時間也是不同的,體現了用括號的必要性和簡便性,通過學生總結說特點引導他們猜想,然后對猜想進行驗證,得出結論,并應用到實際中,培養(yǎng)學生們學以致用的好習慣。
上周去濱州聽課,學到了“猜測-舉例驗證-總結-應用”的教學模式,充分體現了新課標的探究性學習,并在本課教學中得到了很好的利用,不完全歸納法,也在本課中用所應用。但是在引入時應該讓學生們把這兩個算式的特點和聯系理解透徹了,學生們會很快的猜想出這條規(guī)律,整節(jié)課講速度有些慢,導致了幾個經典的練習題沒有處理,創(chuàng)設情境激發(fā)學生的求知欲來導入新課,會收到更好的效果。
。80+4)×25=80×25+4×25此題的.處理,我感到比較欣慰。當發(fā)現學生們(80+4)×25=80×25+4時,我靈機一動在黑板上寫下了這個錯誤的算式,讓和我做的一樣的同學舉手,大約有5、6個同學高興地舉起手,還有一個同學得意地說“剛才我還以為做錯了呢?”看到這種情景我接著說:“不舉手的同學你們想說點什么嗎?”此句話給了這些沒有舉手的同學的信心,他們迫不及待地說出了正確的解法。這道題學生們非常容易做錯,這樣的處理會使學生加深印象,提高做題的準確率。
《乘法分配律》教學反思 篇13
一、讓學生從實質上理解乘法分配律
在乘法分配律的教學中,如果只求形式把握不求實質理解,一方面從認識的角度看是不嚴謹的(形式上的不完全歸納不一定得出真理),另一方面很容易造成學生不求甚解、囫圇吞棗的不良認知習慣。如果滿足于從形式上掌握乘法分配律,對于學生的后續(xù)發(fā)展也極為不利。因此,在教學時先出示了這樣一道例題:一件茄克衫65元,一條褲子35元。王老師買5件茄克衫和5條褲子,一共要花多少元?學生用了兩種解答方法即:(65+35)×5=65×5+35×5。借助對同一實際問題的不同解決方法讓學生體會乘法分配律的合理性。
二、突破乘法分配律的教學難點
相對于乘法運算中的其他規(guī)律而言,乘法分配律的結構是最復雜的,等式變形的能力是教學的難點。為了突破教學難點,我設計了一系列的練習。
1、在□里填數,○里填運算符號:如(25+45)×4=□○□○□○□……
2、在相等的.一組算式后面打“√”:如16×7+24×7(16+24)×7□……
在這一組題目中教者重點評析了最后一道題:40×50+50×9040×(50+90)□。先讓學生說說著一題為什么不能打√,再根據乘法分配律的特征,分別寫出與左右算式相等的式子。通過練習學生對乘法分配律有了進一步的認識,又讓學生照上面的樣子寫出的幾個這樣的等式,最后歸納出了乘法分配律的字母表示:(a+b)×c=a×c+b×c。
實際上課堂時學生對于能否找到反例的活動很感興趣,可以嘗試讓學生也提幾個反例,經過討論逐個否決,在這樣的過程中,學生的等式變形能力能夠得到很大提高,有益于加深對乘法分配律的認識。
《乘法分配律》教學反思 篇14
乘法分配律是在學生學習了加法交換律、結合律和乘法交換律、結合律的基礎上教學的。乘法分配律也是學生較難理解與敘述的定律,是一節(jié)比較抽象的概念課。我根據教學內容的特點,為學生提供多種探究方法,激發(fā)學生的自主意識。
具體設計:先創(chuàng)設兔子吃蘿卜的情景,調動學生的學習積極性。
通過買“老伯伯養(yǎng)了10只猴子,每只兔子早上吃4個蘿卜,晚上要吃3只蘿卜這些猴子一天共要吃掉多少個蘿卜?”列出兩種不同的式子,讓學生通過觀察兩種不同的計算方法也得到了相同的結果,這兩個算式也可用“=”連接。
然后讓學生觀察這兩個等式的特點,仿造上面的等式填空。
。4+5)×25=(14+25)×5=(37+125)×8=。
再讓學生觀察這幾組算式,等號左邊的算式有什么相同點?等號右邊的算式有什么相同點?等號左邊算式中的兩個加數與右邊算式中的什么數有關系?左邊算式中的一個因數與右邊算式中的哪個數有關系?使之讓學生從中感受了乘法分配律的模型。
從而引出乘法分配律的概念:“兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變!庇米帜感问奖硎荆海╝+b)×c=a×c+b×c,他們確實能夠體會到兩個不同的算式具有相等的關系。
第一步:通過資料獲取繼續(xù)研究的信息。
雖然所得的信息很簡單,只是幾組具有相等關系的算式,但這是學生通過活動自己獲取的,學生對于它們感到熟悉和親切,用他們作為繼續(xù)研究的對象,能夠調動學生的參與意識。
第二步:觀察算式,尋找規(guī)律。讓學生通過討論初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個算式都是相等的?此時,我不急于告訴學生答案,而是讓學生自己通過舉例加以驗證。這里既培養(yǎng)了學生的猜測能力,又培養(yǎng)了學生驗證猜測的能力。
第三步:應用規(guī)律,解決實際問題。通過對于實際問題的解決,進一步拓寬乘法分配律。這一階段,既是學生鞏固和擴大知識,又是吸收內化知識的階段,同時還是開發(fā)學生創(chuàng)新思維的重要階段。
本節(jié)課的可取之處:
1、為學生提供了充分的數學活動機會,把學生的活動定位在感悟和體驗上,引導學生用數學思維方式去發(fā)現、去探索。
2、使學生在辨析與爭論中,自然而然地完成猜測與驗證,形成清晰的認識,在學生舉例中使學生感到乘法分配律的'一個重要因素,最后由特殊到一般總結字母公式。
3、將模仿式的學習變?yōu)樘骄渴降膶W習。
4、在本課的練習設計上,能力求有針對性,有坡度,同時也注意知識的延伸。
本節(jié)課的不足之處:
1、習題在安排上在充分理解《乘法分配律》的基礎上,可以再安排一些具有思考性的題目,如78×99+78=78×(99+1),為后面的簡便運算作伏筆,這樣教學效果會更好。
2、在數學術語上還得反復推敲,以達到準確無誤。
3、本堂課中新的教學理念有所體現,但在具體的操作中還缺乏成熟的思考,對學生的積極性沒有充分調動起來。
我會堅持不斷學習理論知識,多聽課多向前輩們請教,切實提高業(yè)務能力。
《乘法分配律》教學反思 篇15
乘法分配律是學生較難理解和敘述的定律,比起乘法交換率和乘法結合率男掌握的多。因此在本節(jié)課教學設計上,我結合新課標的一些基本理念和學生的具體情況,注重從實際出發(fā),把數學知識和實際生活緊密聯系起來,讓學生在不斷的感悟和體驗中學習新知識。
《數學課程標準》指出:“學生的數學學習內容應當是現實的、有意義的、富有挑戰(zhàn)性的!睌祵W教育家波利亞曾經說過:“數學教師的首要責任是盡其一切可能,來發(fā)展學生解決問題的能力!倍覀冞^去的教學往往比較重視解決書上的數學問題,學生一旦遇到實際問題就束手無策。因此,上課一開始,我創(chuàng)造性地使用教材,創(chuàng)設了一個肯德基餐廳用餐的情境,使學生置身于非常熟悉的生活情境中,極大地激發(fā)了學生的學習欲望。學生很快地按要求用兩種不同的方法列出算式,并且能夠輕而易舉地證明兩式相等。接著要求學生通過觀察這個等式看看能否發(fā)現什么規(guī)律。在此基礎上,我并沒有急于讓學生說出規(guī)律,而是繼續(xù)為學生提供具有挑戰(zhàn)性的研究機會:“請你再舉出一些符合自己心中規(guī)律的等式”,繼續(xù)讓學生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點,驗證其內在的規(guī)律,從而概括出乘法分配律。這樣既培養(yǎng)了學生的`猜想能力,又培養(yǎng)了學生驗證猜想的能力。學生通過自主探索去發(fā)現、猜想、質疑、感悟、調整、驗證、完善,主體性得到了充分的發(fā)揮。
同時,我還注重學生的合作與交流,多向互動。倡導課堂教學的動態(tài)生成是新課程標準的重要理念。在數學學習中,每個學生的思維方式、智力、活動水平都是不一樣的。因此,為了讓不同的學生在數學學習中得到不同的發(fā)展,我在本課教學中立足通過生生、師生之間多向互動,特別是通過學生之間的互相啟發(fā)與補充來培養(yǎng)他們的合作意識,實現對“乘法分配律”的主動建構。學生在這樣一個開放的環(huán)境中博采眾長,共同經歷猜想、驗證、歸納知識的形成過程,共同體驗成功的快樂。既培養(yǎng)了學生的問題意識,又拓寬了學生思維能力,學生也學得積極主動。
應用規(guī)律,解決實際問題是數學學習的目的所在。在練習題型的設計上,有搶答(填空)題、判斷題、連線題、簡算題和拓展題,它們并不孤立,而是有機地聯系在一起,由基本題到變式題,由一般題到綜合題,有一定的梯度和廣度。使學生逐步加深認識,在弄清算理的基礎上,學生能根據題目的特點,靈活地運用所學知識進行簡便運算和拓展練習。不僅要求學生會順向應用乘法分配律,而且還要求學生會反向應用。通過正反應用的練習,加深學生對乘法分配律的理解。從課堂反饋來看,學生熱情較高,能夠學以致用,知識掌握的牢固。學生通過自己的努力以及和同學的交流合作,解題速度和準確性都很理想。
本節(jié)課有一定的亮點,但其中出現了不少問題:學生參與的積極性沒有預想中那么高?赡芘c我相對缺乏激勵性語言有關。也有可能今天的題材學生不太感興趣。以后注意,學生不感興趣的材料,教師應該想辦法使呈現的這個材料變得能讓學生感興趣。另外,在回答問題時,個別學生的語言不夠流利、準確。對乘法分配律的敘述稍顯羅嗦,不夠堅定、自信。在這方面有待今后加強訓練和提高。
《乘法分配律》教學反思 篇16
昨天,我與全班同學一起進行了乘法分配律探討學習,從作業(yè)的反饋中,一部分同學的作業(yè)相當完美,對公式的應用,變形拓展都能應用自如;我也發(fā)現部分學生的正確率很低,特別乘法分配律的“分別”相乘理解得不清楚,沒有把每個加數與因數相乘,造成作業(yè)正確率低。針對這種情況,在教學中應該注意些什么,我積極思考,與同學進行交流,找出他們思維中出錯的原因,正確進行補救,以達到對乘法分配律的正確運用,靈活應用。
一、乘法分配律的教學時,注重從例題的解答中引導抽象出乘法分配律。強調注重它的外形結構特點,也要同時注重其內涵。
教材中植樹情境圖給出了以下的條件:一共有25個小組,每組里4人負責挖坑、種樹,2人負責抬水、澆樹,“一共有多少名同學參加植樹活動?”這一問題,得到了如下兩種解答方法。
方法一:①每組有多少名同學? 2+4=6人
、25組共有多少名同學參加植樹? 6×25=150人
綜合列式:(2+4)×25
=6×25
=150(個)
方法二:①挖坑種樹有多少人? 4×25=100人
②抬水澆水的有多少人? 2×25=50人
、垡还灿卸嗌偃? 100+50=150人
綜合列式:4×25+2×25
=100+50
=150(人)
同學們很容易得出(4+2)×25和4×25+2×25這兩個算式結果相等。這時同學們往往注意了等式兩邊的“外形”結構特點,即兩數的和乘一個數=兩個數的積的和,而忽視從乘法意義角度去理解。這時教師可提問“為什么兩個算式是相等的?”這里不僅要從解題思路的角度理解(4+2)×25=4×25+2×25是相等的,還要從乘法的意義的角度理解,即左邊表示6個25,右邊表示4個25加2個25,等于6個25,所以,(4+2)×25=4×25+2×25
二、注意乘法分配律的特點,多進行練習。
乘法分配律特征是兩數的和乘一個數或兩個積的和。在練習時學生特別容易出現錯誤。把算式做成(80+8)×125
=80×125+80
=10000+80
=10080
為了學生更好地掌握可以讓學生劃出分別相乘的箭頭如:
提醒同學把箭頭畫出來,把兩個加數“分別”與括號外的因數相乘,這樣盡量減少一些把一個加數乘掉的同學。
三、多進行分組練習
一組:15×(8+4) (80+8)×125 (40+4)×25
47×(100+1) 78×(200+2) (100-1)×125
在練習上述題后,讓學生觀察括號里的`數如果不運用乘法分配律會變成怎樣的一個算式:
15×12 88×125 44×25
47×101 78×202 99×125
這些算式我們如何將一個因數拆成兩個數相加的形式,這兩個加數盡量要拆成整十整百或是與外面的數相乘能得整十整百的數。
在讓學生在對乘法分配律基本公式的運用掌握較好之后,再進行第二組乘法分配律反方向運用的形式。
《乘法分配律》教學反思 篇17
《乘法分配律》是本章的難點,它不是單一的乘法運算,還涉及到加法運算。教材對于這部分內容的處理方法與前面講乘法結合律的方法類似。通過觀察幾組數目不同的算式,引導學生發(fā)現規(guī)律,然后歸納、總結,用語言表述出來。在教學時,我也是按照教學參考書的建議安排教學過程的。先復習乘法的交換律和結合律,接著導入新課。通過(18+7)×6○18×6+7×6、20×(15+90)○20×15+20×3
讓學生觀察、分析、思考、歸納,最后在教師的引導下總結出乘法分配律并加以運用。
教學過程中,導課比較快,在歸納乘法分配律的內容時,主觀上是時間緊張,可課后想想,實際上是引導不到位。課堂上學生氣氛不活躍,思維不積極,難以完整地總結出乘法分配律。結果,學生對乘法分配律不太理解,運用時問題較多。如當天在作業(yè)時出現的問題就比較多:45×103有三分之一的學生直接乘,不會簡便;尤其是計算59×21+21時,學生發(fā)現不了它的特點,不會運用乘法分配律,可以說,本節(jié)課上得不是很成功。
今后的工作中,要多向以下幾個方面努力:
1.多聽課,多學習。尤其是青年教師的.課,學習他們的新思想、新方法,改善課堂教學,提高課堂教學藝術和課堂效率。
2.加強同同課教師之間的溝通和交流,相互學習,取長補短,共同進步。
3.認真鉆研教材,把握好教材的重點、難點、關鍵點、易混點,上課時才能做到心中有數,游刃有余。
《乘法分配律》教學反思 篇18
乘法分配律是所有運算律中形式變化較為復雜,且跨越加法和乘法兩級運算的定律,對學生的記憶、理解與運用都提出了較高的要求。教學中,教師需要在探析錯因、讀法糾正、變式訓練上做足功夫,巧制策略。學生在正式接觸乘法分配律之前,學生陸續(xù)掌握了加法和乘法的交換律和結合律,并能熟練使用這些定律進行簡單的運算。照常理推測,同為等式恒等變換,借助已有的經驗,學生對于乘法分配律應該很容易接受。然而,實際情況卻不容樂觀,學生在運用乘法分配律進行簡算時出錯率較高。為此,教師應巧制策略,幫助學生克服困難。
如何幫學生建立數學模型,展現乘法分配律的性質,是教學的根本,也是學生理解的前提。要讓學生對乘法分配律有深刻準確的記憶和理解,用最符合學生心理特征的方式進行闡述才是上策。
為此,我改進了教學方式——切換讀法,化難為易。
[例題]植樹節(jié)那天,學校組織二(1)班的學生植樹,上午植樹4小時,下午植樹2小時,平均每小時植樹25棵,問:植樹節(jié)那天,學生一共植樹多少棵?
步驟1:學生列式多為“25×4+25×2”和“25×(4+2)”兩種式子。
步驟2:簡述各算式的算理:25×4+25×2表示先分別求出半天的.植樹數,再求一天的植樹總數;25×(4+2)表示先求植樹總時長,再求植樹總數。
步驟3:引導學生從數字計算的角度去理解:25×4+25×2表示兩個積的和,25×(4+2)表示兩個數的積。接著用一句話揭示它們的共同點:4個25加上2個25等于6個25,6就是4與2的和。以實例為對象,換成通俗的說法,完美呈現了算式的內涵,深化了學生的理解。
步驟4:針對代數式表示的乘法分配律“a×c+b×c=(a+b)×c”,讓學生嘗試用通俗方式解讀,即a個c加上b個c等于(a+b)個c。
實踐證明,滲入思維的讀法比機械復讀教學效果要好。
《乘法分配律》教學反思 篇19
由于本學期的時間比較短,所以自己在講四年級數學課的時候,不免有些匆匆。為了保持好進度,習題處理稍顯落后。在近一段時間對孩子們的“運用乘法分配律進行簡算”的檢查來看,效果不是很好。我發(fā)現這是好多學生不容易掌握的,很容易和乘法的結合律弄混淆。所以,我就想搞清楚,到底孩子們是哪里沒有搞清楚?就在課下又提問了幾個老在分配率出錯的孩子運算公式,發(fā)現有的孩子能結結巴巴地把公式背出來,有的是比較順利地進行背誦。那么,會順利背誦公式的孩子們到底是哪里不會呢?
帶著這個問題,我是旁敲側擊地進行“盤問”——我拿著生活中的2.5元的冰淇淋打比方,問問買23個和28個需要多少錢?孩子們算的很快。他們知道把23分解成20加上3,還有部分學生28×25=(20+8)×25,我當時一項,哎呦不錯,還不是完全不會啊?磥,孩子們在真正的`生活情境中還是有一大部分人會自覺的用乘法分配律的?墒,真正運用到教學中,孩子們確實很難達到自覺地運用分配律去計算,特別是一些變式就更加的困難了。
在批改作業(yè)的時候,有三四個孩子的下面的結果卻是讓我大跌眼鏡——28×25=(20+8)×25=20×8×25,當時我就在想,壞了,孩子們把這兩個公示記混淆了。果不其然,我給他們出了一道題72×25=(8×9)×25=8×25+9×25,我在給學生們一一講解的時候,我就在反思,這一類問題出現是因為孩子們沒有自覺觀察算式特點的習慣。他們只是急匆匆的完成自己的作業(yè),對于此類的計算的目的單純得很就是只要得到答案,自己就忽略了計算的過程。
后來我就想,我去時應該多出一點類似于(80+8)×25,72×25,125×32×25的這些題對孩子們進行相應的練習,這樣來提高孩子們對公式概念的認識。我可以讓孩子們先學會一道題的做法,在慢慢來進行相應的引導。并且出一些題目要求孩子們使用分配律或者結合律等等,對孩子們進行鞏固。讓孩子們學會多種方法解決一到數學題,把握“湊整”這個解題關鍵,正確、合理地使用運算定律,就是正確的。做到真正的學以致用!
《乘法分配律》教學反思 篇20
《乘法分配律》是整個四年級運算定律中最最重要的一節(jié)。理解乘法分配律、并會很好運用他很重要!所以這節(jié)課重點就是在于讓學生理解乘法分配律的意義。
整堂課基本完成了教學目標,但在環(huán)節(jié)設置以及細節(jié)等方面存在很多問題。
1、概念課親歷過程需精確、嚴密
本節(jié)課是一節(jié)概念課,旨在學生通過操作整理式子(多余3)——觀察式子——猜測觀點——驗證觀點——總結定理,這樣一個過程。如果后面沒有反例,就證明存在這種成立的可能。而在整節(jié)課程中,學生沒有明確的用具體數字驗證它是成立的,所以推導出來的不具有說服力?赡軙o學生一種不好的印象,猜想后就可以了,不需要驗證、或者不需要反證來驗證就可以了。所以概念怎么推到出來這個很重要。
2、師生互動評判加強
學生無論是回答好的還是不好的,對的還是不對的,都需要老師帶有評判性的語言,這樣對于學生的積極性都可以提高。同樣的對于典型的問題可以進行當堂解答,這都是課堂生成的一個過程,需要重視學生在整個課程的反映這個很重要。
3、語言表達方面可以優(yōu)化
在思維拓展的時候,本來應該是“如果給你一把剪刀,你可以拼嗎?用最少的次數去剪,使它拼成一個長方形,你會剪嗎?拼有什么要求嗎?如果沒有相等的兩條邊,你可以創(chuàng)造嗎?”而在課堂上,表達的意思卻是:“如果給你一把剪刀,你可以拼嗎?拼有什么要求,如果沒有,你可以創(chuàng)造嗎?”結果導致最終在小組活動中,學生隨意亂剪,并不理解活動的意義。數學講究的是嚴密性以及邏輯性,所以要求要明確一些,引導性的語言要貼切。整個語言組織,如:相等的兩條表而不是相同的兩條邊
4、注重細節(jié)
在整個過程中有同學列出38×(547-347)和(547-347)×38這兩個算式,它都可以用乘法分配律來講,但同時兩者也是有差異的。課堂生成的東西需要注意,并且坐好預設。將38放到前面,可以避免出錯。這個小的知識點也是需要去讓學生通過對比來理解的這很重要。方便他們積累避免錯誤。
5、試教是一個課堂診斷的過程
在上整堂課前,已經去試教過3個班。雖然每個班情況都不一樣,但是試教就是跟孩子的磨合過程,試教過程中發(fā)現什么問題,再去改正過來,調整好。如果每個班都出現這樣的`問題,說明課程設置不合理。需要對教案進行修改。這也是為什么需要試教。希望在試教過程中,能夠反思,自己發(fā)現問題所在。
總的來說,這個課從制作教案、試教、修改、正式教學過程中,感謝數學組尤其是師傅對我的指點以及磨煉。試教讓我明白了課件調整的重要性,一定要符合學生的認知發(fā)展規(guī)律。讓我明白了數學語言是需要邏輯性,針對性以及嚴密性的。所以未來的路還很長,我還會再修改磨煉的。要相信好課是不斷磨出來的!
《乘法分配律》教學反思 篇21
。、知識的學習不是簡單的“搭積木”的過程,而是一個生態(tài)式“孕育”的`過程。在設計教案時,我們必須從學生的生活經歷、知識背景、學習能力、情感與態(tài)度等方面解讀教材,讓學生在現實具體的情境中體驗和理解數學。通過學生經歷運用數學知識為學生解決問題和男女生比賽等的練習,引導學生觀察、發(fā)現、驗證、歸納,初步了解感知規(guī)律,再次通過練習、描述、完善認識,達到對規(guī)律的理解,建立模型,最后又在熟悉的情境中深化認識認識規(guī)律,豐富規(guī)律的內涵。
。病⒊浞煮w現尋找規(guī)律、描述規(guī)律、應用規(guī)律、發(fā)展規(guī)律的過程。確定教學目標時,我將傳統(tǒng)的“使學生理解并掌握乘法分配律”,拓展為“通過經歷探索乘法分配律的活動,發(fā)現乘法分配律”,在關注結果的同時,更多關注學生獲得結果的過程。學生從對規(guī)律的初步了解、深入理解到應用和拓展,是一個從瑣碎到整合,正表述到逆表述,從單一到開放,從靜態(tài)到動態(tài)的過程。其間培養(yǎng)了學生從“猜想與驗證”等探究的方法。
《乘法分配律》教學反思 篇22
記得曾經在教孩子們乘法分配律的時候,總是遇到很多問題,對于乘法分配律的應用不是很好,吐槽了很久,現在在教二年級的孩子的時候,我發(fā)現其實在二年級已經接觸了這方面的知識,只是沒有進行歸納而已。
二年級的課本上有這樣一種題型,如:
。1)6x9=5x9+9=7x9—9=
。2)9x4=9x3+9=
9x5—9=
。3)8x9=7x9+9=9x9—9=
先計算,你發(fā)現了什么?
我一看到這題,我就想到乘法分配律,但是在二年級剛接觸乘法,不可能就跟他們講乘法分配律。我在上練習課的時候我特意把這題拿出來講了,我想如果這里學生題解好了,對以后學習乘法分配律是有幫助的。在課堂上,我先讓學生自己完成,第一題的第2,3個算式,他們是按照運算順序來計算的,先算乘法,再算加法或減法,這個沒有難度,而且他們根據第一題,后面的兩題都不要做,直接寫出了結果,每一題中的'3個算式的結果是一樣的。我就問他們,為什么會出現這樣情況?學生就答不上來。我就舉了個示范,6x9是6個9相加,5x9+9是5個9相加再加1個9,5個9加1個9是6個9,6個9相加就是6x9,所以5x9+9=6x9=54。學習了乘法的意義,對于這個他們能理解,只是想不到而已,那么7x9—9=,可以交給孩子們完成,第(2)(3)題我也是讓學生來說一說。另外我還補充了一題,6x7—14,我發(fā)現竟然有孩子會想到14就是2個7,6個7減去2個7就是4個7,就是4x7=28。特別棒!
《乘法分配律》教學反思 篇23
1、關注學生已有的知識經驗
以學生身邊熟悉的情境為教學的切入點,激發(fā)學生主動學習的需要,為學生創(chuàng)設了與生活環(huán)境、知識背景密切相關的感興趣的學習情境——為樹勛中心小學購買舞蹈服裝。通過兩種算式的比較,喚醒了學生已有的知識經驗,使學生初步感知乘法分配律。讓學生始終處于主動探索知識的最佳狀態(tài),促使學生對原有知識進行更新、深化、突破、超越。
2、提供自主探索的機會
一堂數學課可以有不同種教法,怎樣教才能在數學活動中培養(yǎng)學生
的創(chuàng)新能力呢?我覺得,最重要的是保證學生的主體地位,提供自主探索的機會。在探索乘法運算律的過程中,提出的問題有易到難,層層遞進,不僅為學生提供了自主探索的時間和空間,使學生經歷乘法運算律的產生和形成過程,而且讓學生發(fā)現其中的數學規(guī)律與奧秘,從而激發(fā)學生對數學深層次的.熱愛。
3、展示知識的發(fā)生過程,引導學生積極主動探究
現代教育觀認為:課堂教學不只是知識的傳授過程,更是學生的發(fā)展過程。從數學學科的特點看,學生所學的數學知識是前人思維的結果。學習這些知識,不是簡單地吸收,而必須通過自己的思維,把前人的思維結果轉化為自己的思維結果。教師的任務是引導和幫助學生去進行再創(chuàng)造,而不是把現成的結論灌輸給學生。讓學生在探索未知領域的過程中,付出與前人發(fā)現這些知識所曾經付出的大體相同的智力代價,從而有效地實現知識訓練智力的價值。例如在“乘法分配律”教學中,我先讓學生根據提供的問題,用不同的方法解決,從而發(fā)現(65+35)×12=65×12+35×12這個等式,讓學生觀察,初步感知“乘法分配律。然后照樣子寫出幾組這樣的等式,引導學生再觀察,讓學生說明自己
發(fā)現的規(guī)律、并用不同的方法來表示這個規(guī)律。這樣學生經歷了“觀察、初步發(fā)現、舉例驗證、再觀察、發(fā)現規(guī)律、概括歸納”這樣一個知識形成過程。不僅要讓學生獲得了數學基礎知識和基本技能,而且讓學生學習科學探究的方法,以培養(yǎng)學生主動探究、發(fā)現知識的能力。
4.讓學生不斷在“反思”中學習,“體驗”中學習
建構主義強調,學習不是簡單地讓學習者占有別人的知識,而是學習者主動地建構自己的知識經驗,形成自己的見解。在學習過程中學習者不僅要不斷監(jiān)視自己對知識的理解程度,判斷自己的進展與目標的差距,采取各種增進和幫助思考的策略,而且還要不斷地反思自己的學習過程。由于數學對象的抽象性、數學活動的探索性決定了小學生不可能一次性地直接把握數學活動的本質,必須要經過多次的反復思考、深入研究和自我調整才可能洞察數學活動的本質特征。就小學數學課堂教學而言,反思的內容主要有:對自己的思考過程進行反思,對解題思路、分析過程、運算過程、語言的表述進行反思,對所涉及的數學思想方法反思等。在數學活動中,當學生在探索過程中遇到障礙或出現錯誤時,教師可以提出一些針對性的、具有啟發(fā)性的問題引導學生主動地反思探索過程;當數學活動結束后,要引導學生反思整個探索過程和所獲得結論的合理性,以獲得成功的體驗。在“乘法分配律”教學中,我先向學生我先讓學生根據提供的問題,用不同的方法解決,從而發(fā)現(65+35)×12=65×12+35×12這個等式,讓學生觀察,是讓學生初步感知這個規(guī)律。同時也體現了教學的差異性,給沒有發(fā)現規(guī)律的同學以再次發(fā)現的機會。然后照樣子寫出幾組這樣的等式,引導學生再觀察,讓學生說明自己發(fā)現的規(guī)律、并用不同的方法來表示這個規(guī)律,來加深學生的數學體驗。又如,學習了“乘法分配律”后,教師可讓學生反思:“乘法分配律”是怎樣總結出來的?從中你受到了什么啟發(fā)?什么知識與“乘法分配律”有聯系?學了“乘法分配律”后有什么用?這樣既豐富了學生的數學體驗,又提高了學生的“反思”的意識和能力。
本課中注意引導了學生在數學活動中體驗數學,在數學中感悟數學,實現了運算律的抽象化與外化運用的認知飛躍,同時也體驗到了學習數學的樂趣。
《乘法分配律》教學反思 篇24
本節(jié)課的教學我主要以幾何直觀為切入點,引導學生通過畫一畫,算一算等學習活動,小組合作,共同經歷乘法分配的探究過程,借助圖形探知、理解乘法分配律。
1、問題情境的創(chuàng)設需更貼近學生的生活。
試講過后與大家的感覺一樣,學生對設計草莓大棚的這個話題不是特別感興趣,接受工作室友們提出的寶貴意見后,想把情境創(chuàng)設改為設計學校的操場。由于學校里孩子們數量每年都在增加,孩子們喜歡的小操場越來越擠,想要擴建這個長方形的小操場,怎么辦呢?這個話題與孩子們的生活息息相關,應該比上一次設計的話題更容易引起他們的關注。
2、教學的設計要尊重已有的知識經驗。
本節(jié)課設計一始,所需的計算方法與原來學過的計算長方形面積有關。長方形的面積長乘寬,即使個別學生忘記也很容易喚醒。我鼓勵學生大膽去猜想, 在計算之前先要在頭腦中勾勒出長方形的模樣,激發(fā)學生在畫圖中梳理題中的數學信息。接下來的三次探究過程,先是教師設定長方形增加的長,再次是學生自己設定長度,再到后來自己設定三個量,給學生充分的想象和發(fā)揮空間,發(fā)揮學生主體的主動作用,即使學生在研究中遇到困難,有小組合作交流討論環(huán)節(jié)也使學生之間有了互相學習和提高的過程。
學生在已有的知識經驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在得出結論的過程中,有的同學用到了文字說明,也有同學是符號表示,還有的是字母表示,無論出現得出的哪種結論,老師都予以肯定和表揚,目的是讓學生從自己的數學現實出發(fā),去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的'成功體驗。
在學生展示匯報的過程中,雖然字母表示的方法更清晰,大家更喜歡,但課后覺得能用文字表述其實是更難的一件事,對這樣的孩子應該在課堂上再多給學生一些鼓勵與肯定,學生的學習興趣會更濃,他們學到的東西可能也會更多。
3、在具體操作中完成由具體到抽象的思維演練。
孩子們自己填寫的數字各不相同,在不同的計算方法和有不同的計算結果中,使學生感受到大量在實例計算后,大膽地完成了由猜想到驗證的過程。猜想是科學發(fā)現的前奏。學生的學習活動中不能沒有猜想,否則,主體性探究活動便缺少了內在的動力,自主學習的過程也成了失去目標的無意義操作。接下來的舉例就成了驗證猜想的必需,無論猜想的結論是“是”還是“非”,學生的思維一直是活躍著的,對學生都是有意義的。這個過程是教會學生學習與掌握探索方法的過程,是培養(yǎng)學生學習品格的過程。
在研究的過程中,如何利用小組合作資源,把研究中遇到困難的,興趣保持不下去的同學的積極性再調動一下就更好了。
課堂學習的過程,一切以師生間,生生間建立的平等交流這個平臺才得以順得完成,教學過程是師生共創(chuàng)共生的過程,師生成為共同建構學習的參與者。在上述的教學活動中,教師讓學生充分經歷學習過程,調動學生學習的熱情:想象——猜想——舉例——驗證,在欣賞學生的“閃光”處給學生“點撥”。師生在課堂交流中才得以共同成長。
《乘法分配律》教學反思 篇25
。、知識的學習不是簡單的“搭積木”的過程,而是一個生態(tài)式“孕育”的過程。在設計教案時,我們必須從學生的生活經歷、知識背景、學習能力、情感與態(tài)度等方面解讀教材,讓學生在現實具體的情境中體驗和理解數學。通過學生經歷運用數學知識為學生解決問題和男女生比賽等的練習,引導學生觀察、發(fā)現、驗證、歸納,初步了解感知規(guī)律,再次通過練習、描述、完善認識,達到對規(guī)律的理解,建立模型,最后又在熟悉的情境中深化認識認識規(guī)律,豐富規(guī)律的內涵。
。、充分體現尋找規(guī)律、描述規(guī)律、應用規(guī)律、發(fā)展規(guī)律的過程。確定教學目標時,我將傳統(tǒng)的“使學生理解并掌握乘法分配律”,拓展為“通過經歷探索乘法分配律的活動,發(fā)現乘法分配律”,在關注結果的同時,更多關注學生獲得結果的過程。學生從對規(guī)律的初步了解、深入理解到應用和拓展,是一個從瑣碎到整合,正表述到逆表述,從單一到開放,從靜態(tài)到動態(tài)的過程。其間培養(yǎng)了學生從“猜想與驗證”等探究的'方法。
。、學生對知識的應用從新課的學習開始就會形成一種思維定勢:學生會認為只要應用乘法分配律就能使所有的計算都變得簡便。應用乘法分配律進行簡便計算,就是要得到一個整十整百數,這樣才叫簡便。而忽視了乘法分配律的真正內涵——改變原來式子的運算順序,結果不變。在教學中,我有意識地選擇了第(3)組兩種情況,讓學生明白,乘法分配律不是簡便計算,是兩個相等算式之間的結構特征,只有當數據比較特殊時,可以運用乘法分配律來改變計算順序,使原先的計算變得簡便。這種科學的辯證思想的建立,對學生具體問題具體分析,靈活地選擇合理的方法計算是十分有利的。其次,運用乘法分配律,可以用兩種方法解決實際問題,增加解決問題的能力。
【《乘法分配律》教學反思】相關文章:
乘法分配律教學反思07-03
《乘法分配律》教學反思02-07
乘法分配律教學反思10-18
《乘法分配律》教學反思(15篇)07-20
《乘法分配律》教學反思精選15篇05-24
《乘法分配律》教學反思(精選20篇)04-11
《乘法分配律》教學反思(通用20篇)11-23
《乘法分配律》教學反思集錦15篇05-12
《乘法分配律》教學反思匯編15篇08-23